Twin-free crystal growth of III-V semiconductor material
    1.
    发明授权
    Twin-free crystal growth of III-V semiconductor material 失效
    III-V半导体材料双重晶体生长

    公开(公告)号:US5431125A

    公开(公告)日:1995-07-11

    申请号:US715166

    申请日:1991-06-14

    IPC分类号: C30B15/00 C30B15/26 C30B17/00

    CPC分类号: C30B29/40 C30B15/26

    摘要: Twin-free (100) InP crystals of large dimensions and having flat crowns are produced by combining the magnetic liquid encapsulated Kyropoulos (MLEK) process and the magnetic liquid encapsulated Czochralski (MLEC) process. Observation of the flat crown by high intensity light ensures twin-free growth in the magnetic environment.

    摘要翻译: 通过将磁性液体包封的Kyropoulos(MLEK)工艺和磁性液体封装的Czochralski(MLEC)工艺结合在一起,制造了具有扁平冠的双尺寸(100)InP晶体。 通过高强度光线观察平坦冠,确保磁环境中的双向自由增长。

    Hydrothermal methods of fabricating trivalent-metal-ion-doped sapphire crystals
    2.
    发明授权
    Hydrothermal methods of fabricating trivalent-metal-ion-doped sapphire crystals 失效
    制造三价金属离子掺杂蓝宝石晶体的水热法

    公开(公告)号:US08236102B1

    公开(公告)日:2012-08-07

    申请号:US12321763

    申请日:2009-01-24

    IPC分类号: C30B7/00 C30B21/02 C30B28/06

    CPC分类号: C30B29/20 C30B7/10

    摘要: A method of hydrothermally synthesizing sapphire single crystals doped with trivalent metal ions in a crystal-growth autoclave including a crystal-growth zone and nutrient-dissolution zone in fluid communication with the crystal-growth zone is provided. Implementations of the method including situating within the crystal-growth zone at least one sapphire-based seed crystal and situating within the nutrient-dissolution zone an aluminum-containing material to serve as nutrient. An acidic, trivalent-metal-ion-containing growth solution is introduced into the cavity in a quantity sufficient, at least when heated to a predetermined average temperature, to immerse the at least one seed crystal and the nutrient in the growth solution. The growth solution is selected such that sapphire exhibits retrograde solubility therein and the growth process is carried out while maintaining an interior-cavity pressure within a range between and including each of 3.5 kilopounds per square inch and 25 kilopounds per square inch and while maintaining a temperature differential between the crystal-growth and nutrient-dissolution zones such that the average temperature within the crystal-growth zone is higher than the average temperature within the nutrient-dissolution zone.

    摘要翻译: 提供了在结晶生长高压釜中水热合成掺杂有三价金属离子的蓝宝石单晶的方法,其包括与晶体生长区流体连通的晶体生长区和营养物溶解区。 该方法的实施包括在晶体生长区内位于至少一个基于蓝宝石的晶种并且在营养物溶解区内定位含铝材料以用作营养物质。 至少在加热到预定的平均温度时,将含酸性,含三价金属离子的生长溶液以足够的量引入空腔中,以将至少一种晶种和营养物浸入生长溶液中。 选择生长溶液使得蓝宝石在其中显示逆行溶解度,并且在保持内腔压力在3.5千磅每平方英寸和25千磅/平方英寸之间的范围内并且同时保持温度的同时保持内腔压力进行生长过程 在晶体生长区和营养物溶解区之间的差异使得晶体生长区内的平均温度高于营养物溶解区域内的平均温度。

    Forming improved metal nitrides
    3.
    发明授权
    Forming improved metal nitrides 有权
    形成改进的金属氮化物

    公开(公告)号:US07276121B1

    公开(公告)日:2007-10-02

    申请号:US10985063

    申请日:2004-11-10

    IPC分类号: C30B35/00

    摘要: Method and apparatus are provided for forming metal nitride (MN), wherein M is contacted with iodine vapor or hydrogen iodide (HI) vapor to form metal iodide (MI) and then contacting MI with ammonia to form the MN in a process of reduced or no toxicity. Such method is conducted in a reactor that is maintained at a pressure below one atmosphere for enhanced uniformity of gas flow and of MN product. The MN is then deposited on a substrate, on one or more seeds or it can self-nucleate on the walls of a growth chamber, to form high purity and uniform metal nitride material. The inventive MN material finds use in semiconductor materials, in nitride electronic devices, various color emitters, high power microwave sources and numerous other electronic applications.

    摘要翻译: 提供用于形成金属氮化物(MN)的方法和装置,其中M与碘蒸气或碘化氢(HI)蒸气接触以形成金属碘化物(MI),然后使MI与氨接触以在还原或 无毒性。 这种方法在保持在低于一个大气压的压力的反应器中进行,以提高气体流动和MN产物的均匀性。 然后将MN沉积在基底上,在一个或多个种子上,或者它可以在生长室的壁上自成核,以形成高纯度和均匀的金属氮化物材料。 本发明的MN材料可用于半导体材料,氮化物电子器件,各种颜色发射器,大功率微波源和许多其它电子应用中。

    Synthesis and growth processes for zinc germanium diphosphide single
crystals
    4.
    发明授权
    Synthesis and growth processes for zinc germanium diphosphide single crystals 失效
    二氧化锗锗单晶的合成和生长工艺

    公开(公告)号:US5544615A

    公开(公告)日:1996-08-13

    申请号:US282869

    申请日:1994-07-29

    IPC分类号: C30B25/00 C01B25/00 C30B15/00

    CPC分类号: C30B25/00 C30B29/10

    摘要: New single crystals of ZnGeP.sub.2 are grown by a chemical vapor transport process from bulk synthesized polycrystalline ZnGeP.sub.2 using the LEK process with a controlled injection of phosphorus. The synthesis of the bulk is based on direct injection of phosphorus through a B.sub.2 O.sub.3 encapsulant and reaction with the zinc germanium melt, resulting in synthesis of a large melt (350 g) of ZnGeP.sub.2. When crystallization is followed by cooling the congruent melt down through the .alpha.-.beta. transition temperature (952.degree. C.) as is typical for bulk growth processes, the result is the growth of partially disordered material. This material is placed in a two zone heated furnace where iodine is used to transport the intermediate product to the growth zone where the single crystals grow, at a temperature below the .alpha.-.beta. phase transition. The resulting crystals produced contained a second cubic phase, which has not been reported previously.

    摘要翻译: ZnGeP2的新型单晶通过化学气相传输方法从大量合成的多晶ZnGeP2生长,使用LEK方法,控制注入磷。 本体的合成基于通过B2O3密封剂直接注入磷并与锌锗熔体反应,导致合成大量的熔融物(350g)的ZnGeP2。 当结晶化之后,将一致的熔体冷却通过α-β转变温度(952℃),如通常的体积生长过程所示,结果是部分无序材料的生长。 将该材料放置在双区加热炉中,其中使用碘在低于α-β相变的温度下将中间产物运输到单晶生长的生长区。 产生的所得晶体含有第二立方相,其以前尚未报道。

    Growth of uniform crystals
    5.
    发明授权
    Growth of uniform crystals 失效
    均匀晶体生长

    公开(公告)号:US07524375B1

    公开(公告)日:2009-04-28

    申请号:US10825801

    申请日:2004-04-01

    IPC分类号: C30B11/00

    摘要: The invention provides for growing semiconductor and other crystals by loading a vessel in its lower portion with a seed crystal, loading a charge thereon in the vessel, heating the charge to a molten state and electromagnetically stirring the melt using magnetic and electric fields to obtain a more uniform composition of melt and slowly reducing the temperature of the melt over the crystal to grow a more uniform crystal from such stirred melt.

    摘要翻译: 本发明通过在其下部装载一晶种的晶体,在容器中加载电荷,将电荷加热到熔融状态,并使用磁场和电场电磁搅拌熔体,从而提供半导体和其它晶体的生长,从而获得 更均匀的熔体组成并缓慢地降低熔体在晶体上的温度,以从这种搅拌熔融物中生长出更均匀的结晶。

    Growth of uniform crystals
    6.
    发明授权
    Growth of uniform crystals 失效
    均匀晶体生长

    公开(公告)号:US06849121B1

    公开(公告)日:2005-02-01

    申请号:US10131458

    申请日:2002-04-23

    IPC分类号: C30B11/00 C30B29/40

    摘要: The invention provides for growing semiconductor and other crystals by loading a vessel in its lower portion with a seed crystal, loading a charge thereon in the vessel, heating the charge to a molten state and electromagnetically stirring the melt using magnetic and electric fields to obtain a more uniform composition of melt and slowly reducing the temperature of the melt over the crystal to grow a more uniform crystal from such stirred melt.

    摘要翻译: 本发明通过在其下部装载一晶种的晶体,在容器中加载电荷,将电荷加热到熔融状态,并使用磁场和电场电磁搅拌熔体,从而提供半导体和其它晶体的生长,从而获得 更均匀的熔体组成,并缓慢地降低熔体在晶体上的温度,从这种搅拌熔融物中生长出更均匀的晶体。

    Forming metal nitrides
    7.
    发明授权
    Forming metal nitrides 失效
    形成金属氮化物

    公开(公告)号:US06676752B1

    公开(公告)日:2004-01-13

    申请号:US10083614

    申请日:2002-02-26

    IPC分类号: C30B2306

    摘要: Method and apparatus are provided for forming metal nitrides (MN) wherein M is contacted with iodine vapor or hydrogen iodide (HI) vapor to form metal iodide (MI) and contacting MI with ammonia to form the MN in a process of reduced or no toxicity. MN is then deposited on a substrate, on one or more seeds or it can self nucleate on the walls of a growth chamber, to form high purity metal nitride material. The inventive MN material finds use in semiconductor materials and in making nitride electronic devices as well as other uses.

    摘要翻译: 提供了用于形成金属氮化物(MN)的方法和装置,其中M与碘蒸气或碘化氢(HI)蒸气接触以形成金属碘化物(MI),并使MI与氨接触以在减毒或无毒性的过程中形成MN 。 然后将MN沉积在基底上,在一个或多个种子上,或者它可以在生长室的壁上自成核,以形成高纯度的金属氮化物材料。 本发明的MN材料可用于半导体材料和制造氮化物电子器件以及其它用途。

    Process for the manufacture of group III nitride targets for use in
sputtering and similar equipment
    8.
    发明授权
    Process for the manufacture of group III nitride targets for use in sputtering and similar equipment 失效
    用于制造用于溅射和类似设备的III族氮化物靶的工艺

    公开(公告)号:US6113985A

    公开(公告)日:2000-09-05

    申请号:US300053

    申请日:1999-04-27

    IPC分类号: C23C14/34 C23C16/30 C23C16/08

    CPC分类号: C23C16/303 C23C14/3414

    摘要: Using a GaN growth furnace, at least three different techniques can be used for forming the targets for the deposition of thin films. In the first, nitrides can be deposited as a dense coating on a target backing plate for use as a target. In this approach, the backing plate is placed near the Group III metal. During processing, the Group III metal or metal halide vaporizes and reacts with the nitrogen source to deposit a dense polycrystalline layer on the backing plate. To build up a thick layer on the backing plate, the backing plate is repeatedly placed in the processing furnace until a satisfactory thickness is attained. For the second approach, a properly shaped reaction vessel, the dense, thick Group III nitride crust that forms on top of the Group III metal during the process can be used directly or mechanically altered to meet the size requirements for a sputtering target holder. As a third approach, the Group III nitride material can be ground into a fine powder using traditional ceramic powder processing methods and then pressed to consolidate the powder into a sputtering target. The third processing option would typically lead to a low density target; however, this "green" compact can then be reinserted into the same processing apparatus that the original powder was synthesized to infiltrate the open pores with the same or another group III metal nitride. This would produce a high density, thick target.

    摘要翻译: 使用GaN生长炉,可以使用至少三种不同的技术来形成用于沉积薄膜的靶。 首先,可以将氮化物作为致密涂层沉积在目标背板上以用作靶。 在这种方法中,背板放置在III族金属附近。 在加工过程中,III族金属或金属卤化物蒸发并与氮源反应,以在背板上沉积致密的多晶层。 为了在背板上建立厚层,将背板重复放置在处理炉中,直到达到令人满意的厚度。 对于第二种方法,适当成形的反应容器,在工艺过程中形成在III族金属顶部上的致密,厚的III族氮化物外壳可直接或机械地改变以满足溅射靶架的尺寸要求。 作为第三种方法,可以使用传统的陶瓷粉末处理方法将III族氮化物材料研磨成细粉末,然后压制以将粉末固结成溅射靶。 第三种处理方案通常会导致低密度目标; 然而,这种“绿色”压块然后可以重新插入与原始粉末合成以相同或另一III族金属氮化物渗透开孔的相同处理装置中。 这将产生高密度,厚的目标。

    Forming improved metal nitrides
    9.
    发明授权
    Forming improved metal nitrides 失效
    形成改进的金属氮化物

    公开(公告)号:US06969426B1

    公开(公告)日:2005-11-29

    申请号:US10083613

    申请日:2002-02-26

    摘要: Method and apparatus are provided for forming metal nitride (MN), wherein M is contacted with iodine vapor or hydrogen iodide (HI) vapor to form metal iodide (MI) and then contacting MI with ammonia to form the MN in a process of reduced or no toxicity. Such method is conducted in a reactor that is maintained at a pressure below one atmosphere for enhanced uniformity of gas flow and of MN product. The MN is then deposited on a substrate, on one or more seeds or it can self-nucleate on the walls of a growth chamber, to form high purity and uniform metal nitride material. The inventive MN material finds use in semiconductor materials, in nitride electronic devices, various color emitters, high power microwave sources and numerous other electronic applications.

    摘要翻译: 提供用于形成金属氮化物(MN)的方法和装置,其中M与碘蒸气或碘化氢(HI)蒸气接触以形成金属碘化物(MI),然后使MI与氨接触以在还原或 无毒性。 这种方法在保持在低于一个大气压的压力的反应器中进行,以提高气体流动和MN产物的均匀性。 然后将MN沉积在基底上,在一个或多个种子上,或者它可以在生长室的壁上自成核,以形成高纯度和均匀的金属氮化物材料。 本发明的MN材料可用于半导体材料,氮化物电子器件,各种颜色发射器,大功率微波源和许多其它电子应用中。

    Process and apparatus for the growth of nitride materials

    公开(公告)号:US06406540B1

    公开(公告)日:2002-06-18

    申请号:US09299928

    申请日:1999-04-27

    IPC分类号: C30B2306

    摘要: This invention provides a process and apparatus for producing products of M-nitride materials wherein M=gallium (GaN), aluminum (AlN), indium (InN), germanium (GeN), zinc (ZnN) and ternary nitrides and alloys such as zinc germanium nitride or indium aluminum gallium nitride. This process and apparatus produce either free-standing single crystals, or deposit layers on a substrate by epitaxial growth or polycrystalline deposition. Also high purity M-nitride powders may be synthesized. The process uses an ammonium halide such as ammonium chloride, ammonium bromide or ammonium iodide and a metal to combine to form the M-nitride which deposits in a cooler region downstream from and/or immediately adjacent to the reaction area. High purity M-nitride can be nucleated from the vapor to form single crystals or deposited on a suitable substrate as a high density material. High purity M-nitride single crystals can be grown by the direct reaction of the halide with the M-metal in a range of sizes from a few micrometers to centimeters, depending on the growth conditions. The small sized crystals are recovered as high purity M-nitride powder while the larger crystals can be prepared as substrates for electronic devices or UV/blue/green emitting diodes and lasers. The deposited layers can be used as M-nitride substrates, or targets for pulsed laser deposition (PLD), or other systems requiring high density targets. The deposition process, and subsequent density of the resulting component, is controlled by the reaction medium and by adjusting the temperature of the ammonium halide in an area near but separate from the reaction zone. Thickness of deposition on the substrates by the same process involves placement of the substrates in a suitable area in the reaction chamber and may be further controlled by the use of nitrogen, nitrogen-hydrogen mixtures or other suitable controlling gas to facilitate uniform distribution of the layer.