摘要:
1,3-propanediol is prepared in a process in which ethylene oxide is reacted with carbon monoxide and hydrogen in an essentially non-water-miscible solvent in the presence of an effective amount of a non-phosphine-ligated cobalt catalyst and an effective amount of a catalyst promoter under reaction conditions effective to produce an intermediate product mixture comprising less than about 15 wt % 3-hydroxypropanal. The 3-hydroxypropanal is extracted in water from the product mixture in more concentrated form, with the majority of the cobalt catalyst remaining in the solvent phase for recycle to the hydroformylation reaction. At least a portion of any residual catalyst in the water phase following extraction is removed by re-extraction with non-water-miscible solvent and recycled to hydroformylation. The 3-hydroxypropanal is then hydrogenated in aqueous solution to the desired 1,3-propanediol.
摘要:
A process for making betahydroxyaldehydes such as 3-hydroxypropanal which comprises intimately contacting (a) an oxirane, (b) carbon monoxide, (c) a reducing agent such as hydrogen, (d) from about 0.01 to about 1 weight percent, basis cobalt metal, of a cobalt hydroformylation catalyst which is optionally complexed with a tertiary phosphine ligand, and (e) a heterogeneous, preferably solid, metal promoter used at a molar ratio of 0.05, preferably 0.15, to 100 moles of heterogeneous metal relative to the moles of soluble cobalt hydroformylation catalyst.
摘要:
1,3-propanediol is prepared in a process which involves hydroformylating ethylene oxide: (a) in an essentially non-water-miscible solvent in the presence of a non-ligated cobalt catalyst and a catalyst promoter at a temperature within the range of about 50.degree. to about 100.degree. C. and a pressure within the range of about 500 to about 5000 psig, to produce an intermediate product mixture comprising less than about 15 wt % 3-hydroxypropanal; (b) adding an aqueous liquid and extracting at a temperature less than about 100.degree. C. the 3-hydroxypropanal to provide an aqueous phase comprising 3-hydroxypropanal in greater concentration than the concentration of 3-hydroxypropanal in said intermediate product mixture, and an organic phase comprising the cobalt catalyst; (c) separating the aqueous phase from the organic phase; (d) hydrogenating the 3-hydroxypropanal to provide a hydrogenation product mixture comprising 1,3-propanediol; and (e) recovering 1,3-propanediol from said hydrogenation product mixture. The process enables the production of 1,3-propanediol in high yields and selectivity without the use of a phosphine ligand-modified cobalt catalyst.
摘要:
Cobalt or rhodium carbonyl compounds are removed from an aqueous solution of 3-hydroxypropanal by a process comprising the steps of:(a) contacting the 3-hydroxypropanal solution with oxygen under acidic conditions at a temperature within the range of about 5 to about 45.degree. C. to produce an oxidation product mixture comprising an aqueous solution of 3-hydroxypropanal, one or more water-soluble cobalt or rhodium species, and byproduct carbon monoxide;(b) removing byproduct carbon monoxide from the oxidation product mixture as it is generated; and(c) passing the oxidation product mixture in contact with an acidic ion exchange resin maintained at a temperature less than about 45.degree. C. and removing at least a portion of the soluble metal compounds from the oxidation product mixture.Such a process is useful in, for example, the manufacture of 1,3-propanediol from ethylene oxide via an intermediate 3-hydroxypropanal solution containing residual carbon dioxide and insoluble cobalt or rhodium catalyst compounds.
摘要:
The present invention is an improvement upon the process for the production of 1,3-propanediol wherein an aqueous solution of 3-hydroxy propanal is formed, catalyst, if any, used in said formation is removed from the solution, sodium hydroxide is added to the solution to neutralize any acid therein such that the pH is at least about 5, the neutralized aqueous solution is subjected to hydrogenation to produce a crude 1,3-propanediol mixture which is distilled to produce 1,3-propanediol, water, and reactive heavy components. The improvement on this process comprises replacing the sodium hydroxide with a hydroxide selected from the group consisting of ammonium hydroxide, alkali metal hydroxides other than sodium hydroxide, and alkaline earth metal hydroxides to reduce the viscosity of the reactive heavy components.
摘要:
A method of treating an aldehyde mixture comprising a carboxylic acid and a metal cation, which method comprises: contacting the aldehyde mixture with a basic separating medium, and subsequently or simultaneously contacting with an acidic separating medium; use of the treated aldehyde mixture to prepare an alcohol; and the alcohol.
摘要:
This invention is a process for synthesizing aliphatic 1,3-diols in one step by hydroformylation and hydrogenation of oxirane, carbon monoxide, and hydrogen employing a catalyst comprising a cobalt carbonyl compound and a cocatalyst metal compound ligated with a ligand in a ligand to cocatalyst metal atom molar ratio in the range of 0.2:1.0 to 0.6:1.0, optionally in the presence of a promoter, where recovery of product is preferably accomplished via water extraction of a diol rich phase from the bulk reaction mixture. The process modifications can, particularly in combination, be beneficial with respect to product recovery, catalyst recycle, and overall economics of a one-step process for producing aliphatic 1,3-diols.
摘要:
The present invention is an improvement upon the process for the production of 1,3-propanediol (PDO) wherein an aqueous solution of 3-hydroxypropanal (HPA) is formed, and the HPA is subjected to hydrogenation to produce a crude PDO mixture comprising PDO, water, MW176 acetal, and high and low volatility materials, wherein the crude PDO mixture is dried to produce a first overhead stream comprising water and some high volatility materials and a dried crude PDO mixture as a first distillate bottoms stream comprising PDO, MW176 acetal, and low volatility materials, and wherein the dried crude PDO mixture is distilled to produce a second overhead stream comprising some high volatility materials, a middle stream comprising PDO and MW176 acetal, and a second distillate bottoms stream comprising PDO and low volatility materials. The improvement on this process comprises treating the crude PDO mixture and/or the dried crude PDO mixture and/or the PDO product with an acidic zeolite, an acid form cation exchange resin, or a soluble acid to convert the MW176 cyclic acetal to more volatile materials which can be easily separated from PDO by distillation.
摘要:
Disclosed is a new catalyst composition comprising a bimetallic Co—Ru catalyst complexed with a N-heterocylcic ligand that is effective, economical, and provides improvements in oxidative stability in the one step synthesis of 1,3-propanediol (1,3-PDO) from ethylene oxide and synthesis gas. For example, cobalt-ruthenium-2,2′-bipyrimidine, 2,2′-dipyridyl, or 2,4,6-tripridyl-s-triazine catalyst precursors in cyclic ether solvents, such as 1,3-dioxolane, 1,4-dioxolane, 1,4-dioxane, and 2-ethyl-2-methyl-1,3-dioxolane, provide good yields of 1,3-PDO in a one step synthesis.
摘要:
An alkanediol such as 1,3-propanediol is prepared in a process which involves reacting an alkylene oxide with carbon monoxide and hydrogen in an essentially non-water-miscible solvent in the presence of a non-phosphine-ligated rhodium catalyst and a catalyst promoter to produce an intermediate product mixture containing a hydroxyalkanal in an amount less than 15 wt %; extracting the hydroxyalkanal from the intermediate product mixture into an aqueous liquid at a temperature less than about 100° C. and separating the aqueous phase containing hydroxyalkanal from the organic phase containing rhodium catalyst; hydrogenating the hydroxyalkanal in the aqueous phase to an alkanediol; and recovering the alkanediol. The process enables the production of an alkanediol such as 1,3-propanediol in high yields and selectivity without the use of a phosphine ligand-modified rhodium catalyst.