摘要:
A method is described herein that can use any one of a number of deposition techniques to create a reference region and a sample region on a single biosensor which in the preferred embodiment is located within a single well of a microplate. The deposition techniques that can be used to help create the reference region and the sample region on a surface of the biosensor include: (1) the printing/stamping of a deactivating agent on a reactive surface of the biosensor; (2) the printing/stamping of a target molecule (target protein) on a reactive surface of the biosensor; or (3) the printing/stamping of a reactive agent on an otherwise unreactive surface of the biosensor.
摘要:
An optical reader system is described herein that uses a scanned optical beam to interrogate a biosensor to determine if a biomolecular binding event occurred on a surface of the biosensor. In one embodiment, the optical reader system includes a light source, a detector and a processor (e.g., computer, DSP). The light source outputs an optical beam which is scanned across a moving biosensor and while this is happening the detector collects the optical beam which is reflected from the biosensor. The computer processes the collected optical beam and records the resulting raw spectral or angle data which is a function of a position (and possibly time) on the biosensor. The processor can then analyze the raw data to create a spatial map of resonant wavelength (peak position) or resonant angle which indicates whether or not a biomolecular binding event occurred on the biosensor. Several other uses of the raw data are also described herein.
摘要:
An optical reader system is described herein that uses a scanned optical beam to interrogate a biosensor to determine if a biomolecular binding event occurred on a surface of the biosensor. In one embodiment, the optical reader system includes a light source, a detector and a processor (e.g., computer, DSP). The light source outputs an optical beam which is scanned across a moving biosensor and while this is happening the detector collects the optical beam which is reflected from the biosensor. The computer processes the collected optical beam and records the resulting raw spectral or angle data which is a function of a position (and possibly time) on the biosensor. The processor can then analyze the raw data to create a spatial map of resonant wavelength (peak position) or resonant angle which indicates whether or not a biomolecular binding event occurred on the biosensor. Several other uses of the raw data are also described herein.
摘要:
An optical reader system and method are described herein that can detect a lateral and/or angular misalignment of one or more biosensors so that the biosensors can be properly re-located after being removed from and then reinserted into the optical reader system. In one embodiment, the biosensors are incorporated within the wells of a microplate.
摘要:
An optical reader system and method are described herein that can detect a lateral and/or angular misalignment of one or more biosensors so that the biosensors can be properly re-located after being removed from and then reinserted into the optical reader system. In one embodiment, the biosensors are incorporated within the wells of a microplate.
摘要:
An optical interrogation system is described herein that can interrogate a label-independent-detection (LID) biosensor and monitor a biological event on top of the biosensor without suffering from problematical parasitic reflections and/or problematical pixelation effects. In one embodiment, the optical interrogation system is capable of interrogating a biosensor and using a low pass filter algorithm to digitally remove problematic parasitic reflections contained in the spectrum of an optical resonance which makes it easier to determine whether or not a biological event occurred on the biosensor. In another embodiment, the optical interrogation system is capable of interrogating a biosensor and using an oversampling/smoothing algorithm to reduce oscillations in the estimated location of an optical resonance caused by the problematical pixelation effect which makes it easier to determine whether or not a biological event occurred on the biosensor.
摘要:
A typical use of linear or two dimensional spectrometers is to expose the detector area, and then shift the photo-electric charges out of the device in a serial fashion. If the illuminating signal is spatially narrow relative to the size of the array, this will drive down the percent of the detector that is utilized, as only a relatively small number of pixels are used to detect the beam. The present invention proposes a method which capitalizes on this spatial under-utilization, and alters the clocking scheme to maximize the read-out speed of the pixels containing signal information. This type of clocking scheme raises the optical power saturation level of the spectrometer. Such an improvement in optical power handling is beneficial for spectrometer based detection of resonant waveguide grating biochemical binding, since in such systems the performance is frequently limited by spectrometer saturation.
摘要:
Elongate packs of circular biscuits are fed at high speed from a wrapping output conveyor to a transverse indexing conveyor. The indexing conveyor has a series of compartments with inclined sides, each compartment receiving a pair of packs end to end. The conveyor indexes each time that it receives a pair of packs, the compartments holding the packs against movement longitudinally of the conveyor. The packs are removed in groups from the indexing conveyor and urged together on a tray of adjustable dimension. Orientation of the packs is maintained, for consistent presentation of printing ABCD.
摘要:
An indexing conveyor 1 travels at (90) degrees to a wrapping output conveyor (2), which conveys elongate packs (3) of circular biscuits at high speed with their diameter-ends leading. The indexing conveyor 1 receives the packs (3) and conveys them in an orthogonal direction, with their long-dimensions leading. The indexing conveyor (1) has a regular series of V-section lugs (11), which receive and center the packs (3) and can accommodate a range of diameters of circular packs (3) while maintaining a constant pitch. A pair of lifting bars (12) lifts a group (31) of packs (3) at a time during the dwell period of the index of the (10) conveyor (1). The packs (3) of each group (31) are moved together during the lift so that they are touching, to ensure that a robotic pick-and-place system can pick up the group (31) reliably.