摘要:
A method and structure for a semiconductor device which provides for an etch of a metal layer such as an interconnect layer which does not affect a thinner layer such as a thin film resistor (TFR) layer, such as a circuit resistor. In one embodiment, a TFR resistor layer is protected by a patterned protective layer during an etch of the metal layer, and provides an underlayer for the metal layer. In another embodiment, the TFR layer is formed after providing the patterned metal layer. The metal layer can provide, for example, end caps for the circuit resistor.
摘要:
A method and structure for a semiconductor device which provides for an etch of a metal layer such as an interconnect layer which does not affect a thinner layer such as a thin film resistor (TFR) layer, such as a circuit resistor. In one embodiment, a TFR resistor layer is protected by a patterned protective layer during an etch of the metal layer, and provides an underlayer for the metal layer. In another embodiment, the TFR layer is formed after providing the patterned metal layer. The metal layer can provide, for example, end caps for the circuit resistor.
摘要:
An integrated circuit, including a junction barrier Schottky diode, has an N type well, a P-type anode region in the surface of the well, and an N-type Schottky region in the surface of the well and horizontally abutting the anode region. A first silicide layer is on and makes a Schottky contact to the Schottky region and is on an adjoining anode region. A second silicide layer of a different material than the first silicide is on the anode region. An ohmic contact is made to the second silicide on the anode region and to the well.
摘要:
Embodiments relate generally to voltage converter structures including a diffused metal oxide semiconductor (DMOS) field effect transistors (FET). Embodiments include the combination of DMOS devices (e.g., FETs with isolated bodies from the substrate) with Schottky diodes on a single semiconductor die. The Schottky diode can be integrated into a cell of a DMOS device by forming an N-type area in the P-body region of the DMOS device.
摘要:
An integrated circuit includes a first and second diode connected in parallel. The first diode has a first breakdown voltage and has first P type region and first N type region adjacent to each other at the surface of the substrate of a substrate to form a lateral diode. The second diode has a second breakdown voltage less than the first breakdown voltage and has a second P type region and second N type region lateral adjacent to each other in the substrate to form a lateral diode below the surface The first and second N type regions overlap and the first and second P type region being electrically connected whereby the first and second diodes are in parallel.
摘要:
An integrated circuit, including a junction barrier Schottky diode, has an N type well, a P-type anode region in the surface of the well, and an N-type Schottky region in the surface of the well and horizontally abutting the anode region. A first silicide layer is on and makes a Schottky contact to the Schottky region and is on an adjoining anode region. A second silicide layer of a different material than the first silicide is on the anode region. An ohmic contact is made to the second silicide on the anode region and to the well.
摘要:
An integrated circuit, including a junction barrier Schottky diode, has an N type well, a P-type anode region in the surface of the well, and an N-type Schottky region in the surface of the well and horizontally abutting the anode region. A first silicide layer is on and makes a Schottky contact to the Schottky region and is on an adjoining anode region. A second silicide layer of a different material than the first silicide is on the anode region. An ohmic contact is made to the second silicide on the anode region and to the well.
摘要:
An EPROM structure includes a NMOS transistor integrated with a capacitor. The terminal names of the NMOS transistor follow the conventional nomenclature: drain, source, body and gate. The gate of the NMOS transistor is connected directly and exclusively to one of the capacitor plates. In this configuration, the gate is now referred to as the “floating gate”. The remaining side of the capacitor is referred to as the “control gate”.
摘要:
An integrated circuit, including a junction barrier Schottky diode, has an N type well, a P-type anode region in the surface of the well, and an N-type Schottky region in the surface of the well and horizontally abutting the anode region. A first silicide layer is on and makes a Schottky contact to the Schottky region and is on an adjoining anode region. A second silicide layer of a different material than the first silicide is on the anode region. An ohmic contact is made to the second silicide on the anode region and to the well.
摘要:
A junction barrier Schottky diode has an N-type well having a surface and a first peak impurity concentration; a P-type anode region in the surface of the well, and having a second peak impurity concentration; an N-type cathode contact region in the surface of the well and laterally spaced from a first wall of the anode region, and having a third peak impurity concentration; and a first N-type region in the surface of the well and laterally spaced from a second wall of the anode region, and having a fourth impurity concentration. The center of the spaced region between the first N-type region and the second wall of the anode region has a fifth peak impurity concentration. An ohmic contact is made to the anode region and cathode contact region, and a Schottky contact is made to the first N-type region. The first and fifth peak impurity concentrations are less than the fourth peak impurity concentration, and the fourth peak impurity concentration is less that the second and third peak impurity concentrations.