摘要:
A bi-directional communication system includes a driver capable of controlling a slew rate of transmitted data signals. Impedance matching can be provided to match an impedance of a driver circuit to an impedance of a communication line. The impedance is maintained constant as data is driven from the data driver. The data receiver circuit can adjust a reference voltage in response to simultaneously transmitted data. The slew rate of the receiver circuit trip point is controlled to maintain adequate noise margin during operation. Both the receiver and driver circuits can be controlled using a delay line circuit.
摘要:
A bi-directional communication system includes a driver capable of controlling a slew rate of transmitted data signals. Impedance matching can be provided to match an impedance of a driver circuit to an impedance of a communication line. The impedance is maintained constant as data is driven from the data driver. The data receiver circuit can adjust a reference voltage in response to simultaneously transmitted data. The slew rate of the receiver circuit trip point is controlled to maintain adequate noise margin during operation. Both the receiver and driver circuits can be controlled using a delay line circuit.
摘要:
A device includes a bus, a first transmitter connected to the bus and configured to transmit a first signal over the bus in a first frequency band, a second transmitter connected to the bus and configured to transmit a second signal over the bus in a second frequency band at the same time that the first transmitter is transmitting the first signal, a first receiver connected to the bus and configured to receive the first signal transmitted over the bus in the first frequency band, and a second receiver connected to the bus and configured to receive the second signal transmitted over the bus in the second frequency band. The first frequency band and the second frequency band occupy different portions of the frequency spectrum.
摘要:
In some embodiments, a chip includes first and second ports to provide first and second received data signals and first and second received strobe signal, respectively. An internal clock signal has a fixed phase relationship to the first received strobe signal and the second received strobe signal has an arbitrary phase relationship with the internal clock signal. First and second write blocks latch the first and second received data signals synchronously with the first and second received strobe signals, respectively. Other embodiments are described and claimed.
摘要:
A method for minimizing jitter using substantially matched, controlled, delay elements is disclosed. The method includes generating an internal loop-timing reference, and controlling elements outside of the loop with the internal loop-timing reference generated. In one embodiment the outside elements are substantially identical to those internal to the closed-loop. Controlled delay elements for preconditioning and distributing closed-loop inputs and outputs, using the same control reference used by internal loop elements are disclosed.
摘要:
In an electronic system having first and second logic devices, a free running on-chip clock signal is generated by the first logic device, where the signal has a frequency that is controlled to match that of a global free-running clock signal received by both devices. The on-chip clock signal is synchronized to a strobe signal received by the first device and that was transmitted in association with a data signal by the second device. A logic function is repeatedly performed as synchronized by the first clock signal, to repeatedly generate one or more bits from the data signal.
摘要:
A frequency control unit has an input to receive a digital downstream strobe signal and an output to provide a controlled delay to the input strobe signal. A downstream latch has a data input to receive a digital downstream data signal and a clock input coupled to the output of the frequency control unit. The controlled delay is essentially equal to a set up time of the latch. A delay element coupled to the output of the frequency control unit further delays the downstream strobe signal by essentially a propagation time of the latch. Output drivers are coupled to the outputs of the latch and the delay element.
摘要:
Briefly, in accordance with one embodiment of the invention an integrated circuit includes: a digital feedback control circuit to adjust the impedance of an interface circuit output buffer based, at least in part, on having adjusted the impedance of a non-data signal output buffer coupled to an external impedance. Briefly, in accordance with another embodiment of the invention, a method of digitally adjusting the impedance of an interface circuit output buffer comprises: digitally adjusting the impedance of a non-data signal output buffer coupled to an external impedance, and digitally adjusting the impedance of the interface circuit output buffer based, at least in part, on the digitally adjusted impedance of the non-data signal output buffer.
摘要:
A system and method for encoding and receiving data is provided. The data is encoded as a pulse amplitude modulated signal such that the amplitude signals do not transition from the highest signal level to the lowest signal level and do not transition from the lowest signal level to the highest signal level. The encoding and decoding is performed in some embodiments via a lookup table, and in further embodiments is designed to minimize the step between sequential pulse amplitude modulated symbols.