摘要:
A precise volume, precisely registerable carrier is provided for use with injection molding for producing integrated circuit bump contacts in the "flip chip" technology. A hemispherical cavity is produced by etching through and undercutting a registered opening into a transparent carrier. The hemispherical cavity has related specific volume and visible peripheral shape that permits simple optical quality control when the injection molding operation has filled the cavity and simple optical registration for fusing to the pads on the integrated circuit.
摘要:
A precise volume, precisely registerable carrier is provided for use with injection molding for producing integrated circuit bump contacts in the “flip chip” technology. A hemispherical cavity is produced by etching through and undercutting a registered opening into a transparent carrier. The hemispherical cavity has related specific volume and visible peripheral shape that permits simple optical quality control when the injection molding operation has filled the cavity and simple optical registration for fusing to the pads on the integrated circuit.
摘要:
A method for forming solder bumps on an electronic structure including the steps of first providing a mold made by a sheet of a mold material having a thickness greater than that of the solder bumps to be formed, the mold material has sufficient optical transparency so as to allow the inspection of a solder material subsequently filled into the mold cavities that are formed in the mold material, and a coefficient of thermal expansion that is substantially similar to the substrate which the mold will be mated to, forming a multiplicity of mold cavities in the sheet of mold material, filling the multiplicity of mold cavities with a solder material, cooling the mold to a temperature that is sufficient to solidify the solder material in the multiplicity of mold cavities, positioning the mold intimately with the electronic structure such that the cavities facing the structure, and heating the mold and the structure together to a temperature sufficiently high such that the solder material transfers onto the electronic structure.
摘要:
A method for forming solder bumps on an electronic structure including the steps of first providing a mold made by a sheet of a mold material having a thickness greater than that of the solder bumps to be formed, the mold material has sufficient optical transparency so as to allow the inspection of a solder material subsequently filled into the mold cavities that are formed in the mold material, and a coefficient of thermal expansion that is substantially similar to the substrate which the mold will be mated to, forming a multiplicity of mold cavities in the sheet of mold material, filling the multiplicity of mold cavities with a solder material, cooling the mold to a temperature that is sufficient to solidify the solder material in the multiplicity of mold cavities, positioning the mold intimately with the electronic structure such that the cavities facing the structure, and heating the mold and the structure together to a temperature sufficiently high such that the solder material transfers onto the electronic structure.
摘要:
A method for forming solder bumps on an electronic structure including the steps of first providing a mold made by a sheet of a mold material having a thickness greater than that of the solder bumps to be formed, the mold material has sufficient optical transparency so as to allow the inspection of a solder material subsequently filled into the mold cavities that are formed in the mold material, and a coefficient of thermal expansion that is substantially similar to the substrate which the mold will be mated to, forming a multiplicity of mold cavities in the sheet of mold material, filling the multiplicity of mold cavities with a solder material, cooling the mold to a temperature that is sufficient to solidify the solder material in the multiplicity of mold cavities, positioning the mold intimately with the electronic structure such that the cavities facing the structure, and heating the mold and the structure together to a temperature sufficiently high such that the solder material transfers onto the electronic structure.
摘要:
An active faceted mirror system is disclosed. The active faceted mirror system includes a set of active facet mirror devices, a base plate and a set of pins for mounting the active facet mirror devices to the base plate. Each of the active facet mirror devices includes a mirror substrate with a reflective surface and a bearing hole on the reverse side for mounting. Additionally, each of the active facet mirror devices includes at least three actuator targets located on the back side of the mirror substrate, a jewel bearing and a flexure for supporting the mirror substrate. The base plate includes a series of bearing holes for mounting the active facet mirror devices and at least three actuators for each of the active facet mirror devices. A set of facet controllers located on the base plate can be used to control the positioning of the active facet mirror devices to produce a desired illumination effect.
摘要:
An apparatus for changing an aggregate intensity of a light within an illumination field of a photolithography system comprising a blade structure and a first actuator. The blade structure is configured to be positioned along an optical path of the photolithography system between an illumination system of the photolithography system and a reticle stage of the photolithography system so that, when the illumination system provides the light having the illumination field, the blade structure is substantially at a center of the illumination field and a first portion of the light within the illumination field impinges upon the blade structure. The blade structure is either translucent to a wavelength of the light or opaque to the wavelength. The first portion of the light has a first area. The first actuator is coupled between a first portion of the blade structure and a frame of the photolithography system and is configured to move at least the first portion of the blade structure in a first direction so that, when the illumination system provides the light having the illumination field, a second portion of the light within the illumination field impinges upon the blade structure. The second portion of the light has a second area. The second area is different from the first area.
摘要:
A first set of interferometric measuring beams is used to determine a location of a patterned surface of a reticle and a reticle focus plane for a reticle that is back clamped to a reticle stage. A second set of interferometric measuring beams is used to determine a map of locations of the reticle stage during scanning in a Y direction. The two sets of interferometric measuring beams are correlated to relate the reticle focal plane to the map of the reticle stage. The information is used to control the reticle stage during exposure of a pattern on the patterned surface of the reticle onto a wafer.
摘要:
A system and method are used to recycle gases in a lithography tool. A first chamber includes an element that emits light based on a first gas. A second chamber uses the emitted light to perform a process and includes the second gas. The first and second gases converge between the two chambers, and at least one of the gases is pumped to a storage device. From the storage device, at least one of the two gases is recycled either within the system or remote from the system and possibly reused within the system. A gaslock can couple the first chamber to the second chamber. A gas source supplies a third gas between the first and the second gas in the gaslock, such that the first gas is isolated from the second gas in the gaslock. The first, second, and/or third gas can be pumped to the storage device and routed to the recycling device. The first, second, and/or third gas can be recycled for reuse to form the emitting light.
摘要:
A first set of interferometric measuring beams is used to determine a location of a patterned surface of a reticle and a reticle focus plane for a reticle that is back clamped to a reticle stage. A second set of interferometric measuring beams is used to determine a map of locations of the reticle stage during scanning in a Y direction. The two sets of interferometric measuring beams are correlated to relate the reticle focal plane to the map of the reticle stage. The information is used to control the reticle stage during exposure of a pattern on the patterned surface of the reticle onto a wafer.