Abstract:
Methods and apparatus relate to processing of petroleum with a bed having a sorbent based diluent that the petroleum contacts upon passing through the bed. Magnetic properties of the sorbent and any other material, such as zeolite, used in the bed enable separation of such bed constituents based on a sulfided form of the sorbent being magnetic in contrast to a non-sulfided form of the sorbent being non-magnetic. Dividing the bed constituents into first and second portions by magnetic separation facilitates in selective replacing and/or regenerating the first portion independent of the second portion.
Abstract:
Methods and apparatus relate to processing of petroleum with a bed having a sorbent based diluent that the petroleum contacts upon passing through the bed. Magnetic properties of the sorbent and any other material, such as zeolite, used in the bed enable separation of such bed constituents based on a sulfided form of the sorbent being magnetic in contrast to a non-sulfided form of the sorbent being non-magnetic. Dividing the bed constituents into first and second portions by magnetic separation facilitates in selective replacing and/or regenerating the first portion independent of the second portion.
Abstract:
Methods and apparatus relate to processing of petroleum with a bed having a sorbent based diluent that the petroleum contacts upon passing through the bed. Magnetic properties of the sorbent and any other material, such as zeolite, used in the bed enable separation of such bed constituents based on a sulfided form of the sorbent being magnetic in contrast to a non-sulfided form of the sorbent being non-magnetic. Dividing the bed constituents into first and second portions by magnetic separation facilitates in selective replacing and/or regenerating the first portion independent of the second portion.
Abstract:
Methods and apparatus relate to processing of petroleum with a bed having a sorbent based diluent that the petroleum contacts upon passing through the bed. Magnetic properties of the sorbent and any other material, such as zeolite, used in the bed enable separation of such bed constituents based on a sulfided form of the sorbent being magnetic in contrast to a non-sulfided form of the sorbent being non-magnetic. Dividing the bed constituents into first and second portions by magnetic separation facilitates in selective replacing and/or regenerating the first portion independent of the second portion.
Abstract:
A process for removing hydrogen sulfide from a fluid stream by contacting a hydrogen sulfide-containing stream with a sorbent composition wherein said sorbent composition is produced by mixing at least one zinc component which is zinc oxide or a compound convertible to zinc oxide, at least one silica component where the silica component comprises silica or a compound convertible to silica, at least one colloidal metal oxide, and optionally at least one pore generator component so as to form a mixture, extruding the mixture, sphering the resulting extrudate to form spherical particles having a size of form about 0.5 to about 15 millimeters drying the resulting spherical particles, calcining the dried particles, steaming the resulting calcined particles, sulfiding the steamed particles by contacting them with sulfides or sulfur at a temperature of about 200° C. to 1400° C. and subjecting the sulfided particles to a temperature sufficient to bum off substantially all of the sulfur on the sulfided particle so as to provide a sorbent composition having improved attrition and crush strength and which is then useful for the desulfurization of hydrogen sulfide-containing fluid stream.
Abstract:
A process to make a sorbent composition said process comprising:(1) contacting(1.1) at least one zinc component, where said zinc component comprises zinc oxide, or a compound convertible to zinc oxide,(1.2) at least one silica component, where said silica component comprises silica, or a compound convertible to silica,(1.3) at least one colloidal oxide component, where said colloidal oxide component comprises a mixture that comprises a metal oxide, and optionally(1.4) at least one pore generator component; to form a first mixture; and thereafter,(2) extruding said first mixture to form an extruded, first mixture; and thereafter,(3) sphering said extruded, first mixture to form a sphered, extruded, first mixture that comprises particles where said particles have a particle size from about 0.5 to about 15 millimeters; and thereafter,(4) drying said sphered, extruded, first mixture to produce a dried, sphered, extruded, first mixture; or simultaneously therewith, or thereafter,(5) calcining said dried, sphered, extruded, first mixture to produce a calcined, dried, sphered, extruded, first mixture; and thereafter,(6) steaming said calcined, dried, sphered, extruded, first mixture, to form a steamed, calcined, dried, sphered, extruded, first mixture; and thereafter,(7) sulfiding said steamed, calcined, dried, sphered, extruded, first mixture, to form said sorbent composition.
Abstract:
A novel composition comprising zinc oxide, zinc phosphate and, optionally, alumina is described which can effectively be used to remove sulfur compounds from a fluid stream by contacting said fluid stream under suitable absorption conditions with the novel composition. A novel method of producing an absorption composition is described where the steps include the formation of a composition comprising zinc oxide, zinc phosphate and, optionally, alumina.
Abstract:
In a desulfurization process for the removal of organosulfur compounds from a hydrocarbon fluid stream such as cracked-gasoline or diesel fuel wherein a bifunctional sorbent system is employed, surface treatment of the bifunctional sorbent during the use of same for desulfurization results in an extension of the useful life of the bifunctional sorbent prior to the regeneration and reactivation of same for further use in the desulfurization of the hydrocarbon fluid stream.
Abstract:
A novel circulatable sorbent material suitable for use in a transport desulfurization system for removing sulfur from a fluid stream containing sulfur and the use thereof in such a transport desulfurization system. The transport desulfurization process utilizes a circulatable particulate material containing alumina, silica zinc oxide and a metal oxide which is contacted with a fluid stream and thereafter separated and reused with a portion being regenerated.
Abstract:
A sorbent composition is provided which can be used in the desulfurization of a hydrocarbon-containing fluid such as cracked gasoline or diesel fuel. The sorbent composition contains a support component and a promoter component with the promoter component being present as a skin on the support component. Such sorbent composition is prepared by a process of impregnating a support component with a promoter component, wherein the promoter component has been melted under a melting condition, followed by drying, calcining, and reducing to thereby provide the sorbent composition.