Abstract:
An apparatus and method for transmitting/receiving data in a closed-loop multi-antenna system. A receiver receives a plurality of data streams from a plurality of transmit antennas of a transmitter, generates Channel Quality Information (CQIs) of channels that carry data streams transmitted from at least two transmit antenna allocated to the receiver among the plurality of transmit antennas, and transmits the CQIs to the transmitter. For the CQI generation, the receiver generates a channel matrix through channel estimation of the received data streams, generates a reception beamforming matrix from the channel matrix including only components of the data streams transmitted from the allocated transmit antennas, and calculates the CQIs using the channel matrix, the reception beamforming matrix, and a total signal-to-noise ratio (SNR) obtained through the channel estimation.
Abstract:
A method for transmitting/receiving feedback information in a multi-antenna system using a closed-loop scheme supporting multiple users, and a feedback system supporting the same. Multiple feedback protocol scenarios are predefined on the basis of communication environments affecting feedback information configurations. The feedback information is transmitted in a feedback protocol scenario determined by a communication environment. The feedback information is constructed with information required by the communication environment.
Abstract:
A method for transmitting and receiving data in a multiuser Multiple-Input Multiple-Output (MIMO) system including a base station connected to a plurality of user equipments. In the method, each of the user equipments separately calculates channel capacity information using a linear reception scheme and a nonlinear reception scheme, and feeds back the calculated channel capacity information to the base station. The base station separately calculates system capacities using at least two different antenna scheduling schemes based on the channel capacity information fed back from the user equipments, and allocates antennas to the user equipments using a selected antenna scheduling scheme having higher system capacity out of the two antenna scheduling schemes.
Abstract:
A method of transmitting/receiving feedback information representing channel quality in a MIMO-OFDM system, in which a receiver measures channel qualities of signals transmitted on a plurality of subbands through a plurality of transmitting antennas by a transmitter, selects a predetermined number of subbands having a highest transmission performance based on the measured channel qualities and preceding information, determines at least one subband group with a maximum rate from among the selected subbands and the preceding information associated with the at least one subband group, and transmits feedback information to the transmitter, the feedback information including channel quality information about the at least one subband group and the associated preceding information.
Abstract:
A multiple-input multiple-output (MIMO) communication system is provided for communication between a transmission apparatus having a plurality of transmission antennas and a reception apparatus having a plurality of reception antennas. The reception apparatus performs singular value decomposition (SVD) on channel information for a channel established to the transmission apparatus, and feeds back the SVD-decomposed channel information to the transmission apparatus. The transmission apparatus receives the SVD-decomposed channel information from the reception apparatus, performs QR decomposition on the received SVD-decomposed channel information, and sets multiple transmission antennas to be allocated to the channel, thereby performing beamforming.
Abstract:
A method and apparatus for transmitting/receiving feedback information in a multi-user multi-antenna system and a system supporting the same are provided, in which all possible combinations are created using column vectors included in a precoding codebook, column vectors are correlated in each of the combinations, column vectors comprising correlations exceeding a reference threshold are designated as similar vectors, at least two similar vector sets are formed with the similar vectors, and feedback information is generated based on the at least two similar vector sets and transmitted.
Abstract:
A method for transmitting and receiving data in a multiuser Multiple-Input Multiple-Output (MIMO) system including a base station connected to a plurality of user equipments. In the method, each of the user equipments separately calculates channel capacity information using a linear reception scheme and a nonlinear reception scheme, and feeds back the calculated channel capacity information to the base station. The base station separately calculates system capacities using at least two different antenna scheduling schemes based on the channel capacity information fed back from the user equipments, and allocates antennas to the user equipments using a selected antenna scheduling scheme having higher system capacity out of the two antenna scheduling schemes.
Abstract:
Provided are a data transmitting and receiving method for a multiple-input multiple-output (MIMO) communication system, and a transmitter and a receiver using the method. Accordingly, since precoding matrices of a codebook is constituted using a rotation matrix, expansion of the codebook is easy, and since each of the precoding matrices is determined according to the number of transmit antennas, the codebook is systematically created according to a system. In addition the codebook can be applied to even a correlated channel, and the minimum distance between precoding matrices can advantageously be maximized.
Abstract:
A method and system are provided for transmitting data in a multiple-input multiple-output (MIMO) communication system. A receiver sets the number of sub-streams of each column of a preceding matrix with respect to all precoding matrices of channels formed between the receiver and a transmitter and measures channel states with respect to sub-stream combinations whose number is equivalent to the number of set sub-streams. The receiver transmits data according to channel states to the transmitter after measuring the channel states with respect to the sub-stream combinations and antenna combinations representing sub-streams used upon data transmission of all the precoding matrices.
Abstract:
In multiuser Multiple-Input Multiple-Output (MIMO) systems in which a base station performs scheduling on the basis of channel information fed back from a plurality of terminals, the user scheduling method of the present invention includes calculating a metric for scheduling the users using the channel information, selecting one of at least two preinstalled scheduling schemes according to the metric, and performing the scheduling with the selected scheduling scheme. The user scheduling method of the present invention performs scheduling with one of TDMA- and STMA-based scheduling schemes which show maximum capacity in different channel environments, such that the system capacity can be optimally maintained even when the channel environment is changed.