摘要:
Provided are a resistive memory device having a probe array and a method of manufacturing the same. The resistive memory device includes a memory part having a bottom electrode and a ferroelectric layer sequentially formed on a first substrate; a probe part having an array of resistive probes arranged on a second substrate, with the tips of the resistive probes facing the ferroelectric layer so as to write and read data on the ferroelectric layer; and a binding layer which grabs and fixes the resistive probes on or above the ferroelectric layer. The method of manufacturing the resistive memory device includes forming a bottom electrode and a ferroelectric layer sequentially on a first substrate; forming an array of resistive probes on a second substrate; and wafer level bonding the first substrate to the second substrate using a binding layer such that tips of the resistive probes face the ferroelectric layer.
摘要:
A magnetic logic device (MLD) and methods of manufacturing and operating an MLD are provided. The MLD includes: a first interconnection; a lower magnetic layer formed on the first interconnection, the lower magnetic layer having a magnetization direction fixed in a predetermined direction; a non-magnetic layer formed on the lower magnetic layer; an upper magnetic layer formed on the non-magnetic layer, the upper magnetic layer having a magnetization direction parallel or anti-parallel to the magnetization direction of the lower magnetic layer; and a second interconnection formed on the upper magnetic layer. A first current source is disposed between one end of the first interconnection and one end of the second interconnection and a second current source is disposed between the other end of the first interconnection and the other end of the second interconnection.
摘要:
Provided are a resistive memory device having a probe array and a method of manufacturing the same. The resistive memory device includes a memory part having a bottom electrode and a ferroelectric layer sequentially formed on a first substrate; a probe part having an array of resistive probes arranged on a second substrate, with the tips of the resistive probes facing the ferroelectric layer so as to write and read data on the ferroelectric layer; and a binding layer which grabs and fixes the resistive probes on or above the ferroelectric layer. The method of manufacturing the resistive memory device includes forming a bottom electrode and a ferroelectric layer sequentially on a first substrate; forming an array of resistive probes on a second substrate; and wafer level bonding the first substrate to the second substrate using a binding layer such that tips of the resistive probes face the ferroelectric layer.
摘要:
A magnetic logic device (MLD) and methods of manufacturing and operating an MLD are provided. The MLD includes: a first interconnection; a lower magnetic layer formed on the first interconnection, the lower magnetic layer having a magnetization direction fixed in a predetermined direction; a non-magnetic layer formed on the lower magnetic layer; an upper magnetic layer formed on the non-magnetic layer, the upper magnetic layer having a magnetization direction parallel or anti-parallel to the magnetization direction of the lower magnetic layer; and a second interconnection formed on the upper magnetic layer. A first current source is disposed between one end of the first interconnection and one end of the second interconnection and a second current source is disposed between the other end of the first interconnection and the other end of the second interconnection.
摘要:
A ferroelectric recording medium and a writing method for the same are provided. The ferroelectric recording medium includes a ferroelectric layer which reverses its polarization when receiving a predetermined coercive voltage. A nonvolatile anisotrophic conduction layer is formed on the ferroelectric layer. A resistance of the anisotrophic conduction layer decreases when receiving a first voltage lower than the coercive voltage, and the resistance of the anisotrophic conduction layer increases when receiving a second voltage higher than the coercive voltage. Multi-bit information is stored by a combination of polarization states of the ferroelectric layer and the resistance of the anisotrophic conduction layer. Accordingly, multiple bits can be expressed on one domain of the ferroelectric recording medium.
摘要:
A ferroelectric recording medium and a writing method for the same are provided. The ferroelectric recording medium includes a ferroelectric layer which reverses its polarization when receiving a predetermined coercive voltage. A nonvolatile anisotrophic conduction layer is formed on the ferroelectric layer. A resistance of the anisotrophic conduction layer decreases when receiving a first voltage lower than the coercive voltage, and the resistance of the anisotrophic conduction layer increases when receiving a second voltage higher than the coercive voltage. Multi-bit information is stored by a combination of polarization states of the ferroelectric layer and the resistance of the anisotrophic conduction layer. Accordingly, multiple bits can be expressed on one domain of the ferroelectric recording medium.
摘要:
A ferroelectric recording medium and a writing method for the same are provided. The ferroelectric recording medium includes a ferroelectric layer which reverses its polarization when receiving a predetermined coercive voltage. A nonvolatile anisotrophic conduction layer is formed on the ferroelectric layer. A resistance of the anisotrophic conduction layer decreases when receiving a first voltage lower than the coercive voltage, and the resistance of the anisotrophic conduction layer increases when receiving a second voltage higher than the coercive voltage. Multi-bit information is stored by a combination of polarization states of the ferroelectric layer and the resistance of the anisotrophic conduction layer. Accordingly, multiple bits can be expressed on one domain of the ferroelectric recording medium.
摘要:
An electric field read/write head, a method of manufacturing the same, and a data read/write device including the electric field read/write head are provided. The data read/write device includes an electric field read/write head which reads and writes data to and from a recording medium. The electric field read/write head includes a semiconductor substrate, a resistance region, source and drain regions, and a write electrode. The semiconductor substrate includes a first surface and a second surface with adjoining edges. The resistance region is formed to extend from a central portion at one end of the first surface to the second surface. The source region and the drain region are formed at either side of the resistance region and are separated from the first surface. The write electrode is formed on the resistance region with an insulating layer interposed between the write electrode and the resistance region.
摘要:
Provided is a ferroelectric recording medium including a ferroelectric recording layer formed of a polarization reversal ferroelectric material and an anisotropic conduction layer that covers the ferroelectric recording layer and changes into a conductor or a non-conductor based on external energy.
摘要:
Provided are a semiconductor probe with a resistive tip, and a method of fabricating the semiconductor probe. The method includes forming a stripe-shaped mask layer on a substrate doped with a first impurity, and forming first and second electrode regions by heavily doping portions of the substrate not covered by the mask layer with a second impurity opposite in polarity to the first impurity; annealing the substrate to decrease a gap between the first and second semiconductor electrode regions, and forming resistive regions lightly doped with the second impurity at portions contiguous with the first and second semiconductor electrode regions; forming a stripe-shaped first photoresist orthogonal to the mask layer, and etching the mask layer such that the mask layer has a square shape; forming a second photoresist on the substrate to cover a portion of the first photoresist and define a cantilever region; forming the cantilever region by etching portions not covered by the first and second photoresists; and removing the first and second photoresists, and forming a resistive tip having a semi-quadrangular pyramidal shape by etching portions of the substrate not covered by the mask layer.