Abstract:
Embodiments of the disclosure include lubricious coatings. In an embodiment the disclosure includes a lubricious coating for a medical device including first and second coated layers. The first coated layer is between the second coated layer and the device surface and includes a vinyl pyrrolidone polymer and a photo reactive group. The second coated layer is in direct contact with the first coated layer and is a top coating that includes an acrylic acid polymer. The second coated layer can optionally include photoreactive groups. The coating was found to have a very low number of particulates (e.g., 10 μm or greater) which is very desirable for in vivo use.
Abstract:
A hemodialysis vascular access device includes a proximal end sized and shaped to sealably couple to a hemodialysis catheter, a movable structure coupled to the proximal end, a fixation structure coupled to the movable region and sized and shaped for fixation on a patient, an elongated sleeve coupled to the fixation structure and sized and shaped for insertion into a patient's vasculature, and a valve at a distal end of the internal lumen. When a hemodialysis catheter is inserted into the device and coupled to the proximal end, distal movement of the proximal end relative to the fixation structure biases a distal end of the hemodialysis catheter from a position inside the elongated sleeve through a valve out of the device and into the patient's blood.
Abstract:
Embodiments of the disclosure include lubricious coatings. In an embodiment the disclosure includes a lubricious coating for a medical device including first and second coated layers. The first coated layer is between the second coated layer and the device surface and includes a vinyl pyrrolidone polymer and a photo reactive group. The second coated layer is in direct contact with the first coated layer and is a top coating that includes an acrylic acid polymer. The second coated layer can optionally include photoreactive groups. The coating was found to have a very low number of particulates (e.g., 10 μm or greater) which is very desirable for in vivo use.
Abstract:
A hemodialysis vascular access device includes a proximal end sized and shaped to sealably couple to a hemodialysis catheter, a movable structure coupled to the proximal end, a fixation structure coupled to the movable region and sized and shaped for fixation on a patient, an elongated sleeve coupled to the fixation structure and sized and shaped for insertion into a patient's vasculature, and a valve at a distal end of the internal lumen. When a hemodialysis catheter is inserted into the device and coupled to the proximal end, distal movement of the proximal end relative to the fixation structure biases a distal end of the hemodialysis catheter from a position inside the elongated sleeve through a valve out of the device and into the patient's blood.
Abstract:
A hemodialysis vascular access device includes a proximal end sized and shaped to sealably couple to a hemodialysis catheter, a movable structure coupled to the proximal end, a fixation structure coupled to the movable region and sized and shaped for fixation on a patient, an elongated sleeve coupled to the fixation structure and sized and shaped for insertion into a patient's vasculature, and a valve at a distal end of the internal lumen. When a hemodialysis catheter is inserted into the device and coupled to the proximal end, distal movement of the proximal end relative to the fixation structure biases a distal end of the hemodialysis catheter from a position inside the elongated sleeve through a valve out of the device and into the patient's blood.