Abstract:
Embodiments of the disclosure include lubricious coatings. In an embodiment the disclosure includes a lubricious coating for a medical device including first and second coated layers. The first coated layer is between the second coated layer and the device surface and includes a vinyl pyrrolidone polymer and a photo reactive group. The second coated layer is in direct contact with the first coated layer and is a top coating that includes an acrylic acid polymer. The second coated layer can optionally include photoreactive groups. The coating was found to have a very low number of particulates (e.g., 10 μm or greater) which is very desirable for in vivo use.
Abstract:
Embodiments of the disclosure include lubricious coatings. In an embodiment the disclosure includes a lubricious coating for a medical device including first and second coated layers. The first coated layer is between the second coated layer and the device surface and includes a vinyl pyrrolidone polymer and a photo reactive group. The second coated layer is in direct contact with the first coated layer and is a top coating that includes an acrylic acid polymer. The second coated layer can optionally include photoreactive groups. The coating was found to have a very low number of particulates (e.g., 10 μm or greater) which is very desirable for in vivo use.
Abstract:
Embodiments of the disclosure include lubricious coatings. In an embodiment the disclosure includes a lubricious coating for a medical device including first and second coated layers. The first coated layer is between the second coated layer and the device surface and includes a vinyl pyrrolidone polymer and a photo reactive group. The second coated layer is in direct contact with the first coated layer and is a top coating that includes an acrylic acid polymer. The second coated layer can optionally include photoreactive groups. The coating was found to have a very low number of particulates (e.g., 10 μm or greater) which is very desirable for in vivo use.
Abstract:
Embodiments of the disclosure include lubricious coatings. In an embodiment the disclosure includes a lubricious coating for a medical device including first and second coated layers. The first coated layer is between the second coated layer and the device surface and includes a vinyl pyrrolidone polymer and a photo reactive group. The second coated layer is in direct contact with the first coated layer and is a top coating that includes an acrylic acid polymer. The second coated layer can optionally include photoreactive groups. The coating was found to have a very low number of particulates (e.g., 10 μm or greater) which is very desirable for in vivo use.
Abstract:
Cell attachment coatings for articles such as implantable medical devices and cell culture vessels are disclosed. The coatings include an intermediate coater layer which includes a phosphorous-containing component that is bonded in the coating by reacted photoreactive functional groups. The coating also include a second coated layer including an immobilized ECM protein or peptide that includes an active portion of an ECM protein that is able to serve as an outer layer to contact cells during use. The coatings promoted enhanced cell binding and growth.
Abstract:
The disclosure provides insertion tools and articles that facilitate entry of a medical device, such as a balloon catheter, into the body. In embodiments the insertion tools have an elongate hollow body (50) that is able to protect a portion of a medical device, such as a balloon of a balloon catheter, during an insertion procedure. In one embodiment the insertion tool has an elongate hollow body (131), a tapered distal end (135), and a locking mechanism (133) at the proximal end which can secure a portion of a balloon catheter. An opening at the distal end can allow passage of the balloon in a folded uninflated state.
Abstract:
Cell attachment coatings for articles such as implantable medical devices and cell culture vessels are disclosed. The coatings include an intermediate coater layer which includes a phosphorous-containing component that is bonded in the coating by reacted photoreactive functional groups. The coating also include a second coated layer including an immobilized ECM protein or peptide that includes an active portion of an ECM protein that is able to serve as an outer layer to contact cells during use. The coatings promoted enhanced cell binding and growth.
Abstract:
The disclosure provides insertion tools and articles that facilitate entry of a medical device, such as a balloon catheter, into the body. In embodiments the insertion tools have an elongate hollow body (50) that is able to protect a portion of a medical device, such as a balloon of a balloon catheter, during an insertion procedure. In one embodiment the insertion tool has an elongate hollow body (131), a tapered distal end (135), and a locking mechanism (133) at the proximal end which can secure a portion of a balloon catheter. An opening at the distal end can allow passage of the balloon in a folded uninflated state.
Abstract:
The disclosure provides insertion tools and articles that facilitate entry of a medical device, such as a balloon catheter, into the body. In embodiments the insertion tools have an elongate hollow body (50) that is able to protect a portion of a medical device, such as a balloon of a balloon catheter, during an insertion procedure. In one embodiment the insertion tool has an elongate hollow body (131), a tapered distal end (135), and a locking mechanism (133) at the proximal end which can secure a portion of a balloon catheter. An opening at the distal end can allow passage of the balloon in a folded uninflated state.
Abstract:
The disclosure provides insertion tools and articles that facilitate entry of a medical device, such as a balloon catheter, into the body. In embodiments the insertion tools have an elongate hollow body (50) that is able to protect a portion of a medical device, such as a balloon of a balloon catheter, during an insertion procedure. In one embodiment the insertion tool has an elongate hollow body (131), a tapered distal end (135), and a locking mechanism (133) at the proximal end which can secure a portion of a balloon catheter. An opening at the distal end can allow passage of the balloon in a folded uninflated state.