摘要:
An electrode for a molten salt battery includes a current collector connectable to an electrode terminal of the molten salt battery and an active material. The current collector has an internal space in which small spaces are mutually coupled. The internal space of the current collector is filled with the active material.
摘要:
A separator (3) of a molten salt battery is impregnated with a molten salt that serves as the electrolyte. The molten salt contains, as cations, at least one kind of ions selected from among quaternary ammonium ions, imidazolium ions, imidazolinium ions, pyridinium ions, pyrrolidinium ions, piperidinium ions, morpholinium ions, phosphonium ions, piperazinium ions and sulfonium ions in addition to sodium ions. These cations do not have adverse effects on a positive electrode (1). In addition, the melting point of the molten salt, which contains sodium ions and the above-mentioned cations, is significantly lower than the operating temperature of sodium-sulfur batteries, said operating temperature being 280-360 DEG C. Consequently, the molten salt battery is capable of operating at lower temperatures than sodium-sulfur batteries.
摘要:
A negative electrode precursor material is provided for preparing a negative electrode, which has a reduced thickness, good current collecting performance, and suppresses deformation and generation of dendrites during operation. A molten salt battery comprises a positive electrode formed by providing an active material film on an Al current collector, a separator comprising a glass cloth impregnated with a molten salt as an electrolyte, and the negative electrode formed by providing a Zn film and an active material film on an Al, current collector, which are respectively contained in a substantially rectangular parallelepiped Al case. The active material absorbs and releases Na ions contained in the molten salt.
摘要:
A separator of a molten salt battery made of a porous resin sheet. The separator is improved in wettability to a molten salt by giving hydrophilicity to the resin sheet. In the case of a fluororesin sheet, the sheet is impregnated with water, and irradiated with ultraviolet rays so that C—F bonds in the fluororesin are cleaved and the resultant reacts with water to generate hydrophilic groups, such as OH groups, in each surface layer thereof. The separator gains hydrophilicity through the hydrophilic groups. The separator made of the resin can be made into a bag form. In a molten salt battery having the bag-form separator, the growth of a dendrite is prevented.
摘要:
In a molten salt battery device, molten salt batteries are arranged in a container to cause a space to be present around the molten salt batteries, and a heating medium is filled into the space around the molten salt batteries. When an electrothermal heater is used to control the temperature of the heating medium through a temperature controlling section, the heating medium is caused to flow. Between the flowing heating medium and the molten salt batteries, heat is exchanged, whereby the molten salt battery device controls the temperature of the molten salt batteries. Since the molten salt batteries attain the heat exchange with the heating medium, which surrounds the batteries, the internal temperature thereof is evenly controlled. Moreover, the molten salt battery device makes it possible to lower the temperature of the heating medium to cool the molten salt batteries easily.
摘要:
The case for a molten salt battery is used for a molten salt battery containing as an electrolyte a molten salt containing sodium ions. The case is formed of aluminum or an aluminum alloy containing 90% by mass or more of aluminum.
摘要:
This molten-salt battery is provided with a battery container for housing a power generation element that contains molten salt. The battery container is provided with a container body (1) and a lid (7). An opening (1E) is provided in the upper surface of the container body (1). The lid (7) is fitted in the opening (1E) of the container body (1) and is welded to the container body (1). A step (1G) is formed to the opening (1E) of the container body (1) along the inner edge of the container body (1). By means of the step (1G), the rim (7A) of the lid (7) is supported with respect to the upper corner of side walls (1A, 1B). Laser light is radiated from above to the rim (7A) of the lid (7) and the upper surface of the side walls (1A, 1B) adjacent thereto. In this way, the rim (7A) of the lid (7) is welded to the container body (1). The molten-salt battery connected body is configured from a plurality of molten-salt batteries. The molten-salt batteries are connected aligned in the horizontal direction in the state of the outer peripheral surfaces of the container bodies (1) of adjacent molten-salt batteries being caused to face each other.
摘要:
A porous metal body includes a porous skeleton that forms a three-dimensional network structure and includes an aluminum layer having a thickness of 1 to 100 μm, and tin layers disposed on an internal surface and an external surface of the aluminum layer. Such a porous metal body can be produced by an internal-tin-layer formation step of forming a tin layer on a surface of a resin molded body having a three-dimensional network structure; an aluminum-skeleton formation step of forming an aluminum layer serving as an aluminum skeleton on a surface of the internal tin layer; an external-tin-layer formation step of forming a tin layer on a surface of the aluminum skeleton; and a resin removal step of removing the resin molded body, the resin removal step being performed after the aluminum-skeleton formation step or after the external-tin-layer formation step.
摘要:
To provide a molten salt battery which is highly safe and has long charge/discharge cycle life. The molten salt battery of the present invention includes a negative electrode 1 in which a negative electrode active material 12 is predominantly composed of carbon such as hard carbon. The negative electrode active material 12 is surface-treated for imparting hydrophilicity to the negative electrode active material 12 to improve the affinity for the molten salt. Further, a transition metal such as iron is added to the negative electrode active material 12 predominantly composed of hard carbon in order to enhance the affinity for the active material. The molten salt battery has higher safety in production and use and longer charge/discharge cycle life than conventional molten salt batteries using metallic sodium as an electrode.
摘要:
A molten-salt battery is provided with rectangular plate-like negative electrodes (21) and rectangular plate-like positive electrodes (41) each housed in a bag-shaped separator (31). The negative electrodes (21) and positive electrodes (41) are arranged laterally and alternately in a standing manner. A lower end of a rectangular tab (22) for collecting current is joined to an upper end of each negative electrode (21) close to a side wall (1A) of a container body (1). The upper ends of the tabs (22) are joined to the lower surface of a rectangular plate-like tab lead (23). A lower end of a rectangular tab (42) for collecting current is joined to an upper end of each positive electrode (41) close to a side wall (1B) of the container body (1). The upper ends of the tabs (42) are joined to the lower surface of a rectangular plate-like tab lead (43).