Abstract:
A method for producing a multilayer coil component includes forming, on a main face of a substrate, a first coil conductor extending along the main face having conductivity, forming a second coil conductor and a third coil conductor apart from each other in a direction in which the first coil conductor extends and each extending from the first coil conductor in a first direction orthogonal to the main face, and forming a fourth coil conductor electrically connected to an end of the second coil conductor opposite to the first coil conductor and extending along the main face. The forming the first coil conductor includes forming, on the main face, a first insulator layer provided with a first penetration portion having a shape corresponding to the first coil conductor and exposing a part of the main face, and forming, by plating, the first coil conductor in the first penetration portion.
Abstract:
A ferrite sintered body of the invention includes; a main component including 48.65 to 49.45 mol % of iron oxide in terms of Fe2O3, 2 to 16 mol % of copper oxide in terms of CuO, 28.00 to 33.00 mol % of zinc oxide in terms of ZnO, and a balance including nickel oxide, and a subcomponent including boron oxide in an amount of 5 to 100 ppm in terms of B2O3 with respect to 100 parts by weight of the main component, in which the ferrite sintered body includes crystal grains having an average crystal grain size of 2 to 30 μm.
Abstract:
A multilayer coil electronic component having improved inductance L, Q, and strength, and which has an element in which a coil conductor and a magnetic element body are stacked. The magnetic element body includes soft magnetic metal particles and a resin. The resin fills a space between the soft magnetic metal particles. Each of soft magnetic metal particles has a soft magnetic metal particle core and an oxide film covering the soft magnetic metal particle core. A layer of the oxide film contacting the soft magnetic metal particle core is made of an oxide including Si.
Abstract:
A ferrite composition includes a main component and a sub-component. The main component includes 10.0 to 38.0 mol % of a Fe compound in terms of Fe2O3, 3.0 to 11.0 mol % of a Cu compound in terms of CuO, 39.0 to 80.0 mol % (excluding 39.0 mol %) of a Zn compound in terms of ZnO, and a balance of a Ni compound. The sub-component includes 10.0 to 23.0 parts by weight of a Si compound in terms of SiO2, 0 to 3.0 parts by weight (including 0 parts by weight) of a Co compound in terms of Co3O4, and 0.1 to 3.0 parts by weight of a Bi compound in terms of Bi2O3 with respect to 100 parts by weight of the main component.
Abstract:
In a multilayer coil component, an end of a lower coil layer and an end of a connecting part are directly overlapped, and the end of the lower coil layer includes a contact edge positioned on a side of the connecting part and being in contact with the connecting part and a non-contact edge positioned on a side opposite to the connecting part and not being in contact with the connecting part. Then, the contact edge and the non-contact edge are not overlapped when viewed from a laminated direction. Consequently, a propagation distance of a crack becomes longer as compared with the case where an end face is parallel to the laminated direction, effectively suppressing advance of the crack. Suppressed advance of a crack in this manner makes the multilayer coil component provide a high component strength as a whole.
Abstract:
A soft magnetic metal powder includes a plurality of soft magnetic metal grains composed of an Fe—Si based alloy. A content of P in the Fe—Si based alloy is 110 to 650 ppm provided that a total content of Fe and Si is 100 mass %. A soft magnetic metal fired body includes soft magnetic metal fired grains composed of an Fe—Si based alloy. A content of P in the Fe—Si based alloy is 110 to 650 ppm provided that a total content of Fe and Si is 100 mass %.
Abstract:
A ferrite composition composed of a main component including 26 to 46 mol % of an iron oxide in terms of Fe2O3, 4 to 14 mol % of a copper oxide in terms of CuO, 0 to 26 mol % of a zinc oxide in terms of ZnO, and a residue of 40.0 mol % or more of a nickel oxide in terms of NiO. The ferrite composition, with respect to 100 parts by weight of the main component, is also composed of a subcomponent including 0.8 to 10.0 parts by weight of a silicon compound in terms of SiO2, 1.0 to 15.0 parts by weight of a cobalt compound in terms of Co3O4, and 0.7 to 30.0 parts by weight of a bismuth compound in terms of Bi2O3. A value of the cobalt compound content in terms of Co3O4 divided by the silicon compound content in terms of SiO2 is 0.4 to 5.5.
Abstract:
Composite electronic including coil, capacitor and intermediate parts, wherein coil part includes coil-conductor and magnetic-layer, capacitor part includes internal electrodes and dielectric-layer, which contains SrO—TiO2 or ZnO—TiO2 based oxide, intermediate part between coil and capacitor parts, intermediate part includes intermediate material layer, which contains ZnO, TiO2 and boron, ZnO contained in intermediate material layer 50-85 parts by mole and TiO2 contained the intermediate material layer 15-50 parts by mole when total content of ZnO and TiO2 in intermediate material layer is 100 parts by mole, content boron in intermediate material layer is 0.1-5.0 parts by weight of B2O3 when total of ZnO and TiO2 in intermediate material layer set to 100 parts by weight, part of ZnO and TiO2 intermediate material layer constitute ZnO—TiO2 compound, which in intermediate material layer is 50 wt % or more when total weight of ZnO and TiO2 in intermediate material layer is set to 100 wt %.
Abstract:
In order to provide a dielectric ceramic composition capable of sintering at a low temperature, implementing a low relative dielectric constant, providing other excellent properties (such as a relative density and an insulation resistance), performing co-firing of different materials, and suppressing dispersion of Ag in the sintered body when the internal electrode is formed, the dielectric ceramic composition includes a main ingredient containing SiO2—K2O—B2O3-based glass of 40 to 65 weight %, quartz of 35 to 50 weight %, and amorphous silica of remaining weight %; and a subsidiary ingredient containing alumina of 1.5 to 4 weight %, K2O-MO—SiO2—B2O3-based glass (where “MO” denotes at least any one selected from a group consisting of CaO and SrO) of 5 to 20 weight % relative to the main ingredient of 100 weight %.
Abstract:
In order to provide a dielectric ceramic composition capable of sintering at a low temperature, implementing a low relative dielectric constant, providing other excellent properties (such as a relative density and an insulation resistance), performing co-firing of different materials, and suppressing dispersion of Ag in the sintered body when the internal electrode is formed, the dielectric ceramic composition includes a main ingredient containing SiO2—K2O—B2O3-based glass of 40 to 65 weight %, quartz of 35 to 50 weight %, and amorphous silica of remaining weight %; and a subsidiary ingredient containing alumina of 1.5 to 4 weight %, K2O-MO—SiO2—B2O3-based glass (where “MO” denotes at least any one selected from a group consisting of CaO and SrO) of 5 to 20 weight % relative to the main ingredient of 100 weight %.