Abstract:
A nozzle according to one embodiment has an inner surface and an outer surface, and is provided with a first passage through which an energy ray passes, and a second passage that is provided between the inner surface and the outer surface, and through which powder and fluid pass. The second passage includes a second open end on one end thereof in a first direction. A first surface that is one of the inner surface and the outer surface includes a first edge on one end thereof in the first direction. A second surface that is the other one of those includes a second edge on one end thereof in the first direction, and is distanced from the first edge toward the first direction. The fluid ejected from the second open end flows along the second surface, and separates at the second edge.
Abstract:
An optical processing head capable of reducing the energy loss at the time of optical processing is disclosed. The optical processing head includes a first optical element that converts light emitted by a light source into first parallel light, a second optical element that is arranged downstream of the first optical element and converts the first parallel light into first divergent light, a third optical element that is arranged downstream of the second optical element and converts the first divergent light into second parallel light, and a fourth optical element that is arranged downstream of the third optical element and converts the second parallel light into convergent light which is condensed on the processing surface side.
Abstract:
An overall apparatus is downsized by reducing the size of a light beam branching structure. There is provided an optical processing head including an optical element group that guides a processing light beam from a light source to a process surface, and a light beam branching portion that branches reflected light of the processing light beam from the process surface and an observation light beam for observing a state of the process surface. The light beam branching portion is arranged on a light beam path of the processing light beam, and includes, between the optical element group and the process surface, a half mirror that guides the observation light beam to an observation optical system.
Abstract:
An optical processing head capable of downsizing an apparatus while increasing the shaping accuracy of optical processing is disclosed. The optical processing head performs processing while moving, in a predetermined moving direction on a processing surface, an optical spot formed by condensing light emitted by a light source. The optical processing head includes an optical element that condenses light emitted by the light source to generate the optical spot of a shape elongated in the moving direction of the optical spot. Part of the optical spot is set as a processing region, the front side and/or rear side of the processing region in the moving direction is set as a pre-heating region and/or post-heating region, and a processing target object before and/or after processing in the region is heated.
Abstract:
A nozzle according to one embodiment includes a nozzle unit and a guide surface. A first passage, a second passage, and the guide surface are provided to the nozzle unit. The first passage has a first open end. The second passage has a second open end, and a section that is positioned upstream of the second open end and that extends in a second direction. The guide surface has an edge in a first direction. The guide surface is exposed on the outer side at the edge, is along a third direction at the edge, the third direction being a direction becoming more distanced from an axis than the second direction does, as the third direction is extended further toward the first direction. A flow of fluid ejected from the second open end follows the guide surface, and becomes separated from the nozzle unit at the edge.
Abstract:
Ejection and stop of a powder flow are switched while maintaining a once generated steady flow without stopping it. A processing nozzle includes a supply source of a fluid containing a powder, a first channel through which the fluid supplied from the supply source passes, a second channel that supplies the fluid to an ejection port of the nozzle, a third channel that releases the fluid outside the nozzle, and a switch that causes the first channel and the second channel to communicate with each other when supplying the fluid to the ejection port, and causes the first channel and the third channel to communicate with each other when not supplying the fluid to the ejection port.
Abstract:
This specification discloses a processing nozzle for efficiently performing supply of a powder serving as a material used for processing using an energy line. The processing nozzle includes a powder ejector that ejects a powder serving as a processing material toward a molten pool formed on a process surface by an energy line. The processing nozzle further includes an adjuster that adjusts, in accordance with the shape of the molten pool, the shape and/or position of a powder spot formed by the powder ejector.
Abstract:
An optical processing nozzle that homogeneously supplies a fluid to a processing surface in optical processing is provided. The optical processing nozzle includes a beam path that is arranged so that a beam can pass through the beam path toward a processing surface in order to perform processing using a beam guided from a light source, and a channel structure that is arranged around the beam path and is configured to eject a fluid toward the processing surface. The channel structure includes an inflow port through which the fluid flows, at least two passage holes through which the fluid flowing from the inflow port passes, a channel that guides the fluid from the inflow port to the passage holes, and an ejection port from which the fluid having passed through the at least two passage holes is ejected toward the processing surface. The at least two passage holes are arranged to be spatially symmetrical with respect to the inflow port, and the ejection port is arranged to be spatially symmetrical with respect to the optical axis of a beam coming out from the beam path.
Abstract:
This specification discloses an optical processing head including a light guide portion that guides, to a process surface, a ray for processing. The light guide portion is further configured to guide, to the process surface, a ray for inspection different in wavelength from the ray for processing. The optical processing head further includes an inspection portion that inspects the state of the process surface based on reflected light of the ray for inspection reflected by the process surface. With the optical processing head, the state of the process surface can be easily inspected even during optical processing.
Abstract:
An optical processing head that detects a trouble of an optical processing head that will be generated at the time of optical processing before the trouble occurs is disclosed. The optical processing head that performs processing by condensing, on a process surface, a ray emitted by a light source for processing includes a cylindrical housing that surrounds a ray for processing emitted by the light source for processing, a ray emitter for inspection that is incorporated in the cylindrical housing and arranged outside the path of the ray for processing, and a light receiver that is incorporated in the cylindrical housing, arranged outside the path of the ray for processing, and receives a ray for inspection emitted by the ray emitter for inspection. The contamination of the inner surface of the cylindrical housing or the concentration of a scattering object flowing into the cylindrical housing is inspected by using a signal acquired from the light receiver.