Abstract:
In some examples, an integrated circuit comprises: a semiconductor die including a semiconductor substrate, a dielectric layer on the semiconductor substrate, and a metallization structure encapsulated in the dielectric layer, in which the semiconductor substrate includes a transistor having a first current terminal, a second current terminal, and a channel region between the first and second current terminals, and the dielectric layer has a sensing side facing away from the semiconductor substrate; an insulation layer on the sensing side; a sensor terminal on the sensing side and over the channel region; and a restriction structure including an opening and a rigid silicon-based fluidic structure, in which the silicon-based fluidic structure is on the sensing side and encapsulates a fluid cavity on the sensing side, the sensor terminal is in the fluid cavity, and the restriction structure is configured to transport a fluid by microfluidic diffusion.
Abstract:
An example microelectromechanical structures (MEMS) switch includes a body having a first end and a second end opposite the first end. The body extends from a base at the first end and has a first width. The MEMS switch further includes a bridge extending laterally from the body at the second end, and a spine extending between the bridge and the base. The spine has a second width smaller than the first width. At least one of the spine or the body includes a first material with a first thermal coefficient and a second material with a second thermal coefficient different from the first thermal coefficient.
Abstract:
An apparatus includes first and second electrodes separated by an insulative material (such as a piezoelectric material). The apparatus also includes a protective layer over the first and second electrodes. The protective layer has a first opening that exposes a portion of the first electrode and a second opening that exposes a portion of the second electrode. The apparatus further includes a first electrical contact at least partially within the first opening and electrically coupled to the first electrode. In addition, the apparatus includes a second electrical contact at least partially within the second opening and electrically coupled to the second electrode. Each of the first and second electrical contacts includes a stack of metal layers. The stack of metal layers includes a titanium nitride layer, a titanium layer over the titanium nitride layer, and an aluminum copper layer over the titanium nitride layer and the titanium layer.
Abstract:
An apparatus includes a semiconductor structure having a cavity. The apparatus also includes a first electrical terminal on a first cavity side, a second electrical terminal on a second cavity side, and the second electrical terminal including an extension that overlaps part of the cavity. The apparatus also includes a bendable beam extending from the first cavity side and overlapping at least part of the extension. The apparatus also includes an actuator in a periphery of the beam, the actuator configured to generate a fringing electric field that causes the second beam side to move towards the extension in a direction different from the fringing electric field and bend the beam.
Abstract:
An apparatus includes first and second electrodes separated by an insulative material (such as a piezoelectric material). The apparatus also includes a protective layer over the first and second electrodes. The protective layer has a first opening that exposes a portion of the first electrode and a second opening that exposes a portion of the second electrode. The apparatus further includes a first electrical contact at least partially within the first opening and electrically coupled to the first electrode. In addition, the apparatus includes a second electrical contact at least partially within the second opening and electrically coupled to the second electrode. Each of the first and second electrical contacts includes a stack of metal layers. The stack of metal layers includes a titanium nitride layer, a titanium layer over the titanium nitride layer, and an aluminum copper layer over the titanium nitride layer and the titanium layer.
Abstract:
An apparatus includes a semiconductor structure having a cavity, a first terminal on a first cavity side, and a second terminal on a second cavity side. The second terminal includes an extension that overlaps part of the cavity. The extension includes a first contact. The apparatus includes a bendable beam extending from the first cavity side and includes a metal layer coupled to the first terminal. The beam has opposite first and second beam sides. The first beam side couples to the first terminal, and the second beam side faces the second cavity side. The beam includes a second contact that overlaps at least a portion of the extension and faces the first contact. An actuator is configured to bend the bendable beam around a first axis, and bend the bendable beam around a second axis orthogonal to the first axis by moving the second beam side against the extension.