Abstract:
In one example a semiconductor device has a data latch that includes first and second transmission gates and first and second inverters. The first inverter is connected between a first terminal of the first transmission gate and a first terminal of the second transmission gate. The second inverter is connected between a second terminal of the first transmission gate and a second terminal of the second transmission gate. The data latch is configured to store a datum received at the connection between the first transmission gate and the second inverter, and to store a datum received at the connection between the second transmission gate and the first inverter.
Abstract:
A method of screening complementary metal-oxide-semiconductor CMOS integrated circuits, such as integrated circuits including CMOS static random access memory (SRAM) cells, for transistors susceptible to transistor characteristic shifts over operating time. For the example of SRAM cells formed of cross-coupled CMOS inverters, separate ground voltage levels can be applied to the source nodes of the driver transistors, or separate power supply voltage levels can be applied to the source nodes of the load transistors (or both). Asymmetric bias voltages applied to the transistors in this manner will reduce the transistor drive current, and can thus mimic the effects of bias temperature instability (BTI). Cells that are vulnerable to threshold voltage shift over time can thus be identified.
Abstract:
An integrated circuit and method of generating a layout for an integrated circuit in which circuitry peripheral to an array of repetitive features, such as memory or logic cells, is realized according to devices constructed similarly as the cells themselves, in one or more structural levels. The distance over which proximity effects are caused in various levels is determined. Those proximity effect distances determine the number of those features to be repeated outside of and adjacent to the array for each level, within which the peripheral circuitry is constructed to match the construction of the repetitive features in the array.
Abstract:
A method of screening complementary metal-oxide-semiconductor CMOS integrated circuits, such as integrated circuits including CMOS static random access memory (SRAM) cells, for transistors susceptible to transistor characteristic shifts over operating time. For the example of SRAM cells formed of cross-coupled CMOS inverters, separate ground voltage levels can be applied to the source nodes of the driver transistors, or separate power supply voltage levels can be applied to the source nodes of the load transistors (or both). Asymmetric bias voltages applied to the transistors in this manner will reduce the transistor drive current, and can thus mimic the effects of bias temperature instability (BTI). Cells that are vulnerable to threshold voltage shift over time can thus be identified.
Abstract:
An SRAM with buffered-read bit cells is disclosed (FIGS. 1-6). The integrated circuit includes a plurality of memory cells (102). Each memory cell has a plurality of transistors (200, 202). A first memory cell (FIG. 2) is arranged to store a data signal in response to an active write word line (WWL) and to produce the data signal in response to an active read word line (RWL). A test circuit (104) formed on the integrated circuit is operable to test current and voltage characteristics of each transistor of the plurality of transistors of the first memory cell (FIGS. 7-10).
Abstract:
A method of testing large-scale integrated circuits including multiple instances of memory arrays, and an integrated circuit structure for assisting such testing, are disclosed. In one embodiment, voltage drops due to parasitic resistance in array bias conductors are determined by extracting layout parameters, and subsequent circuit simulation that derives the voltage drops in those conductors during operation of each memory array. In another embodiment, sense lines from each memory array are selectively connected to a test sense terminal of the integrated circuit, at which the array bias voltage at each memory array is externally measured. Feedback control of the applied voltage to arrive at the desired array bias voltage can be performed.
Abstract:
A solid-state memory in which each memory cell includes a cross-point addressable write element. Each memory cell includes a storage element, such as a pair of cross-coupled inverters, and a read buffer for coupling one of the storage nodes to a read bit line for the column containing the cell. The write element of each memory cell includes one or a pair of write select transistors controlled by a write word line for the row containing the cell, and write pass transistors connected to corresponding storage nodes and connected in series with a write select transistor. The write pass transistors are gated by a write bit line for the column containing the cell. In operation, a write reference is coupled to one of the storage nodes of a memory cell in the selected column and the selected row, depending on the data state carried by the complementary write bit lines for that column.
Abstract:
In one example a semiconductor device has a data latch that includes first and second transmission gates and first and second inverters. The first inverter is connected between a first terminal of the first transmission gate and a first terminal of the second transmission gate. The second inverter is connected between a second terminal of the first transmission gate and a second terminal of the second transmission gate. The data latch is configured to store a datum received at the connection between the first transmission gate and the second inverter, and to store a datum received at the connection between the second transmission gate and the first inverter.
Abstract:
A method of screening complementary metal-oxide-semiconductor CMOS integrated circuits, such as integrated circuits including CMOS static random access memory (SRAM) cells, for transistors susceptible to transistor characteristic shifts over operating time. For the example of SRAM cells formed of cross-coupled CMOS inverters, separate ground voltage levels can be applied to the source nodes of the driver transistors, or separate power supply voltage levels can be applied to the source nodes of the load transistors (or both). Asymmetric bias voltages applied to the transistors in this manner will reduce the transistor drive current, and can thus mimic the effects of bias temperature instability (BTI). Cells that are vulnerable to threshold voltage shift over time can thus be identified.
Abstract:
An SRAM with buffered-read bit cells is disclosed (FIGS. 1-6). The integrated circuit includes a plurality of memory cells (102). Each memory cell has a plurality of transistors (200, 202). A first memory cell (FIG. 2) is arranged to store a data signal in response to an active write word line (WWL) and to produce the data signal in response to an active read word line (RWL). A test circuit (104) formed on the integrated circuit is operable to test current and voltage characteristics of each transistor of the plurality of transistors of the first memory cell (FIGS. 7-10).