Abstract:
A method for determining a phase bias in the signal transmitted by at least one of the radiating elements of an active antenna on the ground emitting signals into space using a space-division multiple access SDMA method, implementing a step, for each reference receiver, of comparing, to a threshold, the difference between the value of a measurement of the power received by each reference receiver and the sum, out of the radiating elements of the subset beamforming in the direction of the reference receiver, of the differences between the equivalent isotropically radiated power in the direction of the reference receiver and the free-space path loss of each radiating element of the subset.
Abstract:
In the field of active phase-control antennas, a method is provided for calibrating the phase centre of an active antenna comprising a plurality of sub-elements able to receive a useful signal emitted by a satellite, said calibration being defined as a function of the reception characteristics of a reference signal at the level of each sub-element, said reference signal being emitted by the same satellite on a frequency band substantially equal to the frequency band of the useful signal and whose theoretical reception characteristics are known.
Abstract:
A method is provided for demodulating a signal carrying a message transmitted by a terrestrial beacon, executed by a system comprising a constellation of satellites suitable for detecting said signal and for repeating it towards receiving stations on the ground, and an analysis module suitable for receiving signals from said stations. Each receiving station transmits the signals that it receives from the satellite to the analysis module, said module realigning said signals in frequency and/or in time relative to one another, combining the realigned signals to generate a synthetic signal having an enhanced signal-to-noise ratio, and determining the content of said message and/or the modulation parameters of said synthetic signal. The method applies notably to the accurate and reliable location of distress beacons by a satellite system.
Abstract:
An iterative method for detecting is provided, with at least one receiver satellite in orbit, a target possessing reflective properties that are different from those of the area in which the target is found, by GNSS reflectometry, wherein the reflected GNSS signals are received by an active antenna of the receiver satellite comprising a plurality of antenna elements, the method comprising a step of determining assumed positions of the target, for which positions it is desired to detect the target, and, forming beams and tracking GNSS signals in accordance with these assumptions.
Abstract:
A method is implemented by computer for the management of a convoy comprising at least two vehicles, each of the at least two vehicles comprising satellite positioning means and vehicle-to-vehicle communication means, the method comprising the determination of the relative positioning of the vehicles, the determination comprising the measurement of the propagation time of a signal between vehicles by the communication means, the clocks associated with the communication means being synchronized via satellite positioning means at a reference clock time. Developments comprise the communication between the vehicles of various data (e.g. measurement uncertainties, signal-to-noise ratios, residual values), the determination of absolute locations, the use of an SBAS-type system, the use of differential GPS, the use of Doppler measurements for the turns or even the exclusion of a failing satellite. A computer program product and associated systems are described.
Abstract:
A satellite communications network, methods of sending, receiving and repetition, and the associated items of equipment wherein the transmission of a signal between a sending station and a receiving station is relayed by a plurality of satellites visible in common to both these stations are provided. The position of the sending station, the receiving station and the satellites relaying the signal is known by at least one of these items of equipment, which is further configured to separate the signals relayed by the satellites, and to compute, for each of the signals, at least one shift introduced by the propagation of the signal, on the basis of the position of the sending station, of the receiving station, and of the satellite by which it is transmitted, and then to apply the inverse shifts to the signal.
Abstract:
A method of following a transfer orbit or a phase of orbital placement of a continuous-thrust space vehicle comprises the following steps: a) tracking at least one GNSS signal and using it to determine at least one pseudorange between the space vehicle and one or more GNSS satellites transmitting the signal; b) using an estimation model to jointly estimate a set of state parameters of the space vehicle comprising a plurality of position parameters, a plurality of velocity parameters and at least one thrust error parameter characterizing a discrepancy between an actual thrust force of the space vehicle and a nominal thrust force by taking the pseudorange or pseudoranges as input datum of the estimation model. An apparatus for the implementation of such a method is also provided.
Abstract:
A method is provided for transmitting additional information on communication or navigation signals with spectrum spreading, the additional information being coded by a value of intentional quantized degradation of the correlation of the spreading code, the degradation being coded on the spreading code by modifying at least one chip.
Abstract:
A method is provided for determining the position of a satellite navigation system receiver in which use is made of a probabilistic weighting of the signals received, the weighting using a coefficient Ki, for each satellite of index i, the coefficient Ki being a product of factors each comprising a probability of existence of a disturbance, the coefficient Ki, for each satellite of index i, comprising at least one factor of the form (1−Pji)ai.
Abstract:
An integrated radio communication system with ordered hierarchical cellular coverage comprises a first system and a second system, the coverage of the second system covered by the coverage of the first system, and a set of dual-mode terminals that can selectively use the first system or the second system. The first and second systems are configured to simultaneously share a common portion Bc of a first band B1 of frequencies respectively on a first uplink and a second uplink, and respectively manage first transmission resources and corresponding second transmission resources. The second radio communication system of lower level N2 is free to manage its second transmission resources without any coordination constraint with respect to the first system of higher level N1, whereas the first system of higher level is configured to not disturb the second system in the common frequency band portion. The first system is configured to transmit data packets on a first uplink random access contention channel and to manage its first resources optimally in terms of transmission capacity of the channel as a function of the measurement of the occupancy of the second radio resources currently used by the second system and of the first resources currently used by the first system.