Abstract:
An apparatus for providing a reference indication to a patient tissue includes a primary locating block having a patient-specific primary mating surface contoured for mating contact with a portion of the patient tissue in a predetermined primary mating orientation custom-configured responsive to preoperative imaging of the patient tissue. At least one mounting feature is provided to the primary locating block. At least one secondary item is configured for selective engagement with the primary locating block. The secondary item is at least one of a noncustomized secondary item and a patient-specific secondary item. The secondary item provides a reference indication to at least a portion of the patient tissue. The mounting feature of the primary locating block is configured for engagement with at least one secondary item in a predetermined secondary mounting relationship. The secondary mounting relationship is custom-configured for the patient tissue responsive to preoperative imaging of the patient tissue.
Abstract:
An apparatus for aiding visualization of a prosthetic implant and concurrently landmarking a patient tissue includes a center post having proximal and distal post ends longitudinally separated by a post body. The post body defines a post axis coaxially therewith. An implant emulator embodies a reference feature of a prosthetic implant. The implant emulator is carried on an outer surface of the center post at a predetermined longitudinal spacing from the distal post end. A guiding device is removably attached to the implant emulator. The guiding device includes an attachment structure attached to the implant emulator. A spacing arm is connected to the attachment structure and extends laterally outward from the post axis. A landmark guiding structure is connected to the spacing arm, spaced apart from the center post, and embodies at least one of a location and a trajectory for placement of a landmark.
Abstract:
A method for aligning a manipulable sensor assembly includes determination of a replica surface, which represents a field of view of a manipulable sensor assembly associated with an object when the object is located in a desired position and oriented at a desired orientation. Electromagnetic radiation and/or sound reflected from a surface of the region of interest is detected to provide a surface map of the region of interest, which is compared to the replica surface to determine a rotation and/or a translation for the manipulable sensor assembly to bring the surface map into alignment with the replica surface. The position and/or the orientation of the object are altered. The detection of reflected electromagnetic radiation or sound, comparison of the surfaces, and alteration of the position and orientation of the object are repeated until the surface map is in alignment with the replica surface.
Abstract:
A method of preoperative planning comprises creating a virtual model of a native patient tissue; placing a virtual device into a desired device orientation relative to the virtual model of the native patient tissue; specifying at least one structural change to the native patient tissue to facilitate placement of the virtual device in the desired device orientation; creating a virtual model of an altered patient tissue responsive to the specifying at least one structural change to the native patient tissue; and fabricating a tangible representation of a bone using the virtual model of the altered patient tissue.
Abstract:
A guide for assisting with attachment of a stock prosthetic implant to a patient tissue includes a lower guide surface configured to contact an upper implant surface of the stock prosthetic implant when a lower implant surface of the stock prosthetic implant contacts the patient tissue. An upper guide surface is accessible to a user when the lower guide surface is in contact with the upper implant surface. At least one guiding aperture extends through the guide body between the upper and lower guide surfaces at a predetermined aperture location with respect to the guide body and defines a predetermined target trajectory through the guide body. At least one of the target trajectory and the aperture location of each guiding aperture is preselected responsive to preoperative imaging of the patient tissue. A method of assisting with attachment of a stock prosthetic implant to a patient tissue is also provided.
Abstract:
A positioning apparatus for guiding resection of a patient tissue and guiding placement of a prosthetic implant component in a desired implant position with respect to the resected patient tissue and method of use are described. A locating block includes a mating surface contoured for mating contact with the patient tissue. A cutting plane indicator provides a physical indication of a desired cutting plane for the resection. A placement indicator is spaced apart from the locating block and includes a component-contacting feature. An elongate spacing arm is operative to space the placement indicator apart from the locating block. The spacing arm is configured to place the component-contacting feature of the placement indicator at a predetermined placement position in three-dimensional space relative to the patient tissue. The placement position predetermination is at least partially based upon pre-operative imaging of the patient tissue.
Abstract:
A stock instrument includes at least one guide interacting feature. A lower instrument surface of the stock instrument is placed into contact with the patient tissue. A guide has a lower guide surface contoured to substantially mate with at least a portion of an upper instrument surface of the stock instrument. A predetermined instrument orientation upon the patient tissue is defined, which is preselected responsive to preoperative imaging of the patient tissue. The guide and instrument are mated in a predetermined relative guide/instrument orientation wherein at least one guide interacting feature of the instrument is placed into engagement with at least one instrument guiding feature of the guide. The guide is moved into a predetermined guide orientation with respect to the patient tissue and concurrently the instrument is moved into a predetermined instrument orientation with respect to the patient tissue.
Abstract:
A method of preoperative planning comprises creating a virtual model of a native patient tissue; placing a virtual device into a desired device orientation relative to the virtual model of the native patient tissue; specifying at least one structural change to the native patient tissue to facilitate placement of the virtual device in the desired device orientation; creating a virtual model of an altered patient tissue responsive to the specifying at least one structural change to the native patient tissue; and fabricating a tangible representation of a bone using the virtual model of the altered patient tissue.
Abstract:
A patient tissue includes a primary patient tissue area and an anatomically differentiated bordering secondary patient tissue area. An apparatus is at least partially customized responsive to preoperative imaging of the patient tissue. Means are provided for mating with the primary patient tissue area in a preselected relative orientation. Means are provided for fixing a first landmark to the primary patient tissue area in at least one of a predetermined marking location and a predetermined marking trajectory. Means are provided for fixing a second landmark to the secondary patient tissue area in at least one of a predetermined marking location and a predetermined marking trajectory. A method of associating a plurality of landmarks with a patient tissue is also provided.
Abstract:
A stock instrument includes at least one guide interacting feature. A lower instrument surface of the stock instrument is placed into contact with the patient tissue. A guide has a lower guide surface contoured to substantially mate with at least a portion of an upper instrument surface of the stock instrument. A predetermined instrument orientation upon the patient tissue is defined, which is preselected responsive to preoperative imaging of the patient tissue. The guide and instrument are mated in a predetermined relative guide/instrument orientation wherein at least one guide interacting feature of the instrument is placed into engagement with at least one instrument guiding feature of the guide. The guide is moved into a predetermined guide orientation with respect to the patient tissue and concurrently the instrument is moved into a predetermined instrument orientation with respect to the patient tissue.