Abstract:
Methods, systems, and devices are disclosed for encapsulating biological entities with preservation of their biological activity. In one aspect, a method of encapsulating a biological entity includes templating a biocompatible material onto a biological structure to form a coating structure enclosing the biological structure, the coating structure having a size in the nanometer range, in which the coated biological structure preserves its biological activity within the coating structure. In some implementations of the method, the biological structure includes a virus and the biocompatible material includes silica.
Abstract:
The disclosure provide hollow nanospheres and methods of making and using the same. The methods and compositions of the disclosure are useful for drug delivery and gene transfer.
Abstract:
Disclosed are methods, systems, and devices for implementing nanoparticles to encapsulate biomolecules such as enzymes. In one aspect, a nanoparticle device includes a shell structure including an internal layer structured to enclose a hollow interior region and include one or more holes penetrating through the internal layer, and an external layer formed of a porous material around the internal layer; and an enzyme contained within the interior region of the shell structure, the enzyme having entered the shell structure through the one or more holes and incapable of passing through the external layer, in which the pores are of a size that prevents the enzyme to pass through the pores while permitting substances smaller than the pore size to pass through the pores.
Abstract:
The disclosure provide hollow nanospheres and methods of making and using the same. The methods and compositions of the disclosure are useful for drug delivery and gene transfer.
Abstract:
Techniques, devices and systems are disclosed for implementing acoustically triggered propulsion of nano- and micro-scale structures. In one aspect, an ultrasound responsive propulsion device includes a tube that includes one or more layers including an inner layer having an electrostatic surface, and an ultrasound-responsive substance coupled to the inner layer and configured to form gaseous bubbles in a fluid in response to an ultrasound pulse, in which the bubbles exit the tube to propel the tube to move in the fluid.
Abstract:
Techniques, systems, and devices are disclosed for non-thermal cycling of polymerase chain reaction (PCR). In one aspect, a method for cycling PCR includes receiving an electrolytic fluid including ions, primers, polymerase enzymes, nucleotides, and a double-stranded nucleic acid in a fluid chamber having a first electrode and a second electrode, applying an electric field across the first and the second electrodes to generate a first pH level of the electrolytic fluid to denature the double-stranded nucleic acid to at least partial single strands, and applying a second electric field across the first and second electrodes to produce a second pH level of the electrolytic fluid, in which the second pH level enables binding of a polymerase enzyme and a primer with a corresponding segment of the single strands.
Abstract:
Techniques, systems, and devices are disclosed for non-thermal cycling of polymerase chain reaction (PCR). In one aspect, a method for cycling PCR includes receiving an electrolytic fluid including ions, primers, polymerase enzymes, nucleotides, and a double-stranded nucleic acid in a fluid chamber having a first electrode and a second electrode, applying an electric field across the first and the second electrodes to generate a first pH level of the electrolytic fluid to denature the double-stranded nucleic acid to at least partial single strands, and applying a second electric field across the first and second electrodes to produce a second pH level of the electrolytic fluid, in which the second pH level enables binding of a polymerase enzyme and a primer with a corresponding segment of the single strands.
Abstract:
Methods, structures, devices and systems are disclosed for implementing a fiber optic force sensing transducer. In one aspect, an exemplary fiber optic force sensing transducer device includes an optical fiber coated by at least one layer of a polyelectrolyte material that utilizes the movement of optical structures coupled to the external polyelectrolyte layer in an evanescent field produced by the optical fiber to detect forces imposing on the fiber. In one aspect, an optical sensing device includes an optical waveguide that internally guides light, one or more layers formed outside the optical waveguide within an evanescent field of the guided light in the optical waveguide, and one or more optical structures coupled to the one or more layers in the evanescent field to emit light based on interaction with the evanescent field to indicate a position of an optical structure relative to an external surface of the optical waveguide.
Abstract:
Devices and techniques are described that involve a combination of multidimensional electrokinetic, dielectrophoretic, electrophoretic and fluidic forces and effects for separating cells, nanovesicles, nanoparticulates and biomarkers (DNA, RNA, antibodies, proteins) in high conductance (ionic) strength biological samples and buffers. In disclosed embodiments, a combination of continuous and/or pulsed dielectrophoretic (DEP) forces, continuous and/or pulsed field DC electrophoretic forces, microelectrophoresis and controlled fluidics are utilized with arrays of electrodes. In particular, the use of chambered DEP devices and of a properly scaled relatively larger electrode array devices that combines fluid, electrophoretic and DEP forces enables both larger and/or clinically relevant volumes of blood, serum, plasma or other samples to be more directly, rapidly and efficiently analyzed. The invention enables the creation of “seamless” sample-to-answer diagnostic systems and devices. The devices and techniques described can also carry out the assisted self-assembly of molecules, polymers, nanocomponents and mesoscale entities into three dimensional higher order structures.
Abstract:
The disclosure provide hollow nanospheres and methods of making and using the same. The methods and compositions of the disclosure are useful for drug delivery and gene transfer.