Abstract:
A method for producing a chromium sintered body includes a heat treatment step of heat-treating electrolytic chromium flakes at 1,200° C. or higher and 1,400° C. or lower, and a firing step of, after the heat treatment step, filling a container with the electrolytic chromium flakes and firing a resulting filling product by hot isostatic pressing.
Abstract:
A sputtering target includes crystal grains, has a content of an amorphous phase of 3% by volume or less, and contains at least one metal selected from the group consisting of chromium, molybdenum, and chromium-molybdenum alloys.
Abstract:
An oxide sintered body is provided which does not splash from the target surface even at the time of high power film formation, has a high film formation rate, and is used in a sputtering target capable of providing a high-refractive-index film.An oxide sintered body is used which contains zinc, niobium, aluminum and oxygen as constituent elements and in which Nb/(Zn+Nb+Al)=0.076 to 0.289 and Al/(Zn+Nb+Al)=0.006 to 0.031, where Zn, Nb and Al denote contents of zinc, niobium and aluminum, respectively.
Abstract:
Provided is a cylindrical ceramic sputtering target, which significantly reduces the occurrence of a crack, a chip, extraordinary discharge and a nodule.By filling a molten bonding material in a cavity defined by a cylindrical ceramic target material and a cylindrical base material, starting cooling the molten bonding material from its one end toward its other end in a cylindrical axial direction in sequence, and further filling the molten bonding material in the cavity during cooling, a cylindrical ceramic sputtering target is manufactured so as to be characterized in that as observed by an X-ray radiograph of the bonding material, the total area of portions where no bonding material exists is 10 cm2 or less per 50 cm2 of X-ray radiograph area, and the maximum area of the portions where no bonding material exists is 9 cm2 or less.
Abstract:
It is difficult for a Cr—Si-based sintered body composed of chromium silicide (CrSi2) and silicon (Si) to have high strength. Provided is a Cr—Si-based sintered body including Cr (chromium) and silicon (Si), in which the crystal structure attributed by X-ray diffraction is composed of chromium silicide (CrSi2) and silicon (Si), a CrSi2 phase is present at 60 wt % or more in a bulk, a density of the sintered body is 95% or more, and an average grain size of the CrSi2 phase is 60 μm or less.
Abstract:
The purpose of the present invention is to provide a sintered oxide to be used for a sputtering target, whereby little abnormal discharge occurs even during high-power film-deposition and no cracking occurs in the target. A sintered oxide having zinc, aluminum, titanium and oxygen, as constituent elements, characterized in that when the contents of zinc, aluminum and titanium are represented by Zn, Al, and Ti, respectively, the atomic ratios of the elements constituting the sintered oxide are Al/(Zn+Al+Ti)=0.035 to 0.050 and Ti/(Zn+Al+Ti)=0.05 to 0.20, and the average grain size of crystal grains having a Zn2TiO4 crystal phase as the matrix phase in the sintered oxide, is at most 5 μm.