Abstract:
An object of the present disclosure is to provide a lithium ion battery with low resistance to ion conduction. The present disclosure achieves the object by providing a lithium ion battery comprising: a cathode active material; an anode active material; an insulating oxide with neither electron conductivity nor ion conductivity that is formed in an interface between the cathode active material and the anode active material, and contains at least one kind of an element included in the cathode active material and at least one kind of an element included in the anode active material; and an electrolyte material that is an ion conducting path between the cathode active material and the anode active material; wherein the cathode active material comprises Li, at least one kind of Co, Mn, Ni, and Fe, and O; and the anode active material comprises at least one kind of Si, Li and Ti.
Abstract:
A method is provided where an anode of an all-solid-state lithium ion secondary battery is easily doped with lithium and to provide a small resistance at a low battery capacity. The method includes a manufacturing method of a cathode including mixing at least a conductive assistant (C1) and a sulfide solid electrolyte (E1) to obtain a mixture; and mixing at least one cathode active material, a solid electrolyte (E2) and the mixture obtained from the first step to obtain a cathode mixture, wherein an amount of energy added to the sulfide solid electrolyte (E1) is larger than an amount of energy added to the solid electrolyte (E2), and the mixture is a material that releases lithium ions at a potential lower than a potential at which the cathode active material releases and occludes lithium ions. Manufacturing methods for a cathode and an all-solid-state lithium ion secondary battery including the cathode mixture are also disclosed.
Abstract:
The present invention relates to an anode material for lithium-ion batteries. The anode material for lithium-ion batteries is represented by the molecular formula: MxNyTizO(x+3y+4z)/2, where: 0≤x≤8, 1≤y≤8, and 1≤z≤8; M is an alkali metal selected from the group consisting of Li, Na, and K; and N is a group VA element selected from the group consisting of P, Sb, and Bi or a rare earth metal selected from the group consisting of Nd, Pm, Sm, Eu, Yb, and La. The anode material of the present invention has a delithiation potential of 0.8 to 1.2 V vs. Li+/Li, and has a better potential plateau, better cycle performance, and better output-input properties, than a titanium-based anode material.
Abstract:
The main object of the present invention is to provide a cathode active material for a lithium secondary battery with high theoretical capacity. The present invention solves the problem by providing a cathode active material for a lithium secondary battery, wherein the cathode active material comprises a crystal structure belonging to a space group C12/c1, and is represented by (Na1-αLiα)xM1-yNy(PO4)z (0.5≦α≦1, 2.5≦x≦3.5, 0≦y≦0.5, 1.5≦z≦2.5, M is at least one of V and Fe, and N is at least one of Co, Ni and Mn).