Abstract:
An illumination device includes: a light source unit that emits coherent light; and a diffractive optical element that diffracts the coherent light emitted from the light source unit and makes the diffracted light travel to an illuminated surface. The diffractive optical element is disposed such that the coherent light is incident in a state of being inclined with respect to a perpendicular line of a reference plane on which the diffractive optical element is disposed. Zero-order light, which is light other than the diffracted light, of light components emitted from the diffractive optical element travels to a position other than the illuminated surface.
Abstract:
A light source device adapted to generate an illumination light beam for illuminating an illuminated surface includes a light source adapted to emit a light beam, a light path conversion member adapted to rotate around an axis perpendicular to a center axis of the light beam emitted from the light source to convert a light path of the light beam emitted from the light source, an overlapping illumination element adapted to overlap a light beam emitted from the light path conversion member on the illuminated surface, the overlapping illumination element having an entrance position of the light bream input to the overlapping illumination element varies with time, and a rotating section adapted to rotate the light path conversion member.
Abstract:
An image display apparatus employing a laser beam source includes: a light modulating unit that modulates a laser beam emitted from the laser beam source into image light representing an image; and a driving-signal generating unit that generates, on the basis of an image signal of a frame image updated at a fixed first period, a driving signal for driving the light modulating unit. The driving-signal generating unit periodically inserts a noise image in the driving signal while maintaining timing for updating display of the frame image at the first period.
Abstract:
An image display device includes: at least one illumination system adapted to emit a light beam; at least one light modulation element adapted to modulate the light beam emitted from the illumination system; and a projection optical system adapted to project the light beam modulated by the light modulation element, wherein a proceeding direction of a principal ray of the light beam modulated by the light modulation element is nonparallel to an optical axis of the projection optical system when the light beam modulated by the light modulation element enters the projection optical system.
Abstract:
An image display device includes: a first face; a laser light source device emitting laser light; and a diffractive optical element on which the laser light emitted from the laser light source device is incident, generating diffracted light from the incident laser light, and illuminating the first face with the diffracted light, the first face is provided at a position on which zero-order light emitted from the diffractive optical element is not incident, and an image is displayed by light via the first face.
Abstract:
A light source device generates irradiation light that is irradiated onto a predetermined face, the light source device including: a laser light source that emits laser light; a diffractive optical element that diffracts the laser light; a diffusion optical element that has an incidence face into which the laser light is incident and a light emission face from which the laser light from the incidence face is emitted, and that diffuses the laser light; and unit structures that are two-dimensionally arrayed on at least one of the incidence face and the light emission face of the diffusion optical element, and that cause the light which is perpendicularly incident into the diffusion optical element to refract at one time, and then emit this light toward the predetermined face.
Abstract:
A hologram element that forms a predetermined illumination pattern on an irradiated surface by diffracting incident light is disclosed. The illumination pattern is formed by making light in a first wavelength region diffracted in a first region, and the illumination pattern is formed by making light in a second wavelength region different from the first wavelength region diffracted in a second region on the same plane as the first region.
Abstract:
A projector includes: a light source which emits light; an image forming unit which forms an image having desired size by using light emitted from the light source; and a projection unit which projects the image formed by the image forming unit on a light receiving surface. The projection unit has a light diffusing member disposed at a position where an intermediate image corresponding to light released from the image forming unit is formed to diffuse the light, and a projection system which projects the light diffused by the light diffusing member on the light receiving surface. Diffusion intensity distribution of light released from a predetermined position of the light diffusing member contains at least two prominences with the center axis of the light interposed between the prominences.
Abstract:
An image forming apparatus includes: a screen having a display surface; and a projector that renders an image by scanning light on the display screen, wherein the screen selects, independently in respective regions of the display surface, a light transmission state in which the light is transmitted and a light diffusion state in which the light is diffused, the screen being configured such that the region where address light is irradiated is in the light diffusion state and the region where the address light is not irradiated is in the light transmission state, and the projector scans the address light on the display surface such that an area of the display surface corresponding to an image displayed on the display surface changes to the light diffusion state.
Abstract:
A hologram element that forms a predetermined illumination pattern on an irradiated surface by diffracting incident light is disclosed. The illumination pattern is formed by making light in a first wavelength region diffracted in a first region, and the illumination pattern is formed by making light in a second wavelength region different from the first wavelength region diffracted in a second region on the same plane as the first region.