Abstract:
A protection cell for a cell library. The protection cell defines a protection circuit for an IC having a driving device with a first supply voltage Vdd1 and an output, and a driven device having an input and a second supply voltage Vdd2. The protection circuit includes a first device from the group consisting of a P-diode and a gate-Vdd PMOS. The first device is coupled between a first power bus connected to Vdd2 and the input of the driven device. The input of the driven device is coupled by way of a resistor to the output of the driving device. A second device corresponding to the first device is provided, from the group consisting of an N-diode and a grounded gate NMOS. The second device is coupled between the input of the driven device and a ground bus.
Abstract:
A protection cell for a cell library. The protection cell defines a protection circuit for an IC having a driving device with a first supply voltage Vdd1 and an output, and a driven device having an input and a second supply voltage Vdd2. The protection circuit includes a first device from the group consisting of a P-diode and a gate-Vdd PMOS. The first device is coupled between a first power bus connected to Vdd2 and the input of the driven device. The input of the driven device is coupled by way of a resistor to the output of the driving device. A second device corresponding to the first device is provided, from the group consisting of an N-diode and a grounded gate NMOS. The second device is coupled between the input of the driven device and a ground bus.
Abstract:
Circuits and methods for preventing glitch in a circuit are disclosed. In one example, a circuit coupled to an input/output pad is disclosed. The circuit includes: a first level shifter, a second level shifter, and a control logic circuit. The first level shifter is configured for generating a data signal. The second level shifter is configured for generating an output enable signal. The first and second level shifters are controlled by first and second power-on-control signals, respectively. The control logic circuit is coupled to the first level shifter and the second level shifter.
Abstract:
An integrated circuit includes a layer of a semiconductor device including a standard cell configuration having a fixed gate electrode pitch between gate electrode lines and a resistor formed of metal between the fixed gate electrode pitch of the standard cell configuration. In one embodiment, the integrated circuit can be charged device model (CDM) electrostatic discharge (ESD) protection circuit for a cross domain standard cell having the resistor formed of metal. A method of manufacturing integrated circuits includes forming a plurality of gate electrode lines separated by a gate electrode pitch to form a core standard cell device, applying at least a first layer of metal within the gate electrode pitch to form a portion of a resistor, and applying at least a second layer of metal to couple to the first layer of metal to form another portion of the resistor.
Abstract:
Circuits and methods for preventing glitch in a circuit are disclosed. In one example, a circuit coupled to an input/output pad is disclosed. The circuit includes: a first level shifter, a second level shifter, and a control logic circuit. The first level shifter is configured for generating a data signal. The second level shifter is configured for generating an output enable signal. The first and second level shifters are controlled by first and second power-on-control signals, respectively. The control logic circuit is coupled to the first level shifter and the second level shifter.
Abstract:
Circuits and methods for preventing glitch in a circuit are disclosed. In one example, a circuit coupled to an input/output pad is disclosed. The circuit includes: a first level shifter, a second level shifter, and a control logic circuit. The first level shifter is configured for generating a data signal. The second level shifter is configured for generating an output enable signal. The first and second level shifters are controlled by first and second power-on-control signals, respectively. The control logic circuit is coupled to the first level shifter and the second level shifter, and configured for driving the input/output pad to a voltage level based on the data signal and the output enable signal.
Abstract:
Circuits and methods for preventing glitch in a circuit are disclosed. In one example, a circuit coupled to an input/output pad is disclosed. The circuit includes: a first level shifter, a second level shifter, and a control logic circuit. The first level shifter is configured for generating a data signal. The second level shifter is configured for generating an output enable signal. The first and second level shifters are controlled by first and second power-on-control signals, respectively. The control logic circuit is coupled to the first level shifter and the second level shifter.
Abstract:
A protection cell for a cell library. The protection cell defines a protection circuit for an IC having a driving device with a first supply voltage Vdd1 and an output, and a driven device having an input and a second supply voltage Vdd2. The protection circuit includes a first device from the group consisting of a P-diode and a gate-Vdd PMOS. The first device is coupled between a first power bus connected to Vdd2 and the input of the driven device. The input of the driven device is coupled by way of a resistor to the output of the driving device. A second device corresponding to the first device is provided, from the group consisting of an N-diode and a grounded gate NMOS. The second device is coupled between the input of the driven device and a ground bus.
Abstract:
An integrated circuit includes a layer of a semiconductor device including a standard cell configuration having a fixed gate electrode pitch between gate electrode lines and a resistor formed of metal between the fixed gate electrode pitch of the standard cell configuration. In one embodiment, the integrated circuit can be charged device model (CDM) electrostatic discharge (ESD) protection circuit for a cross domain standard cell having the resistor formed of metal. A method of manufacturing integrated circuits includes forming a plurality of gate electrode lines separated by a gate electrode pitch to form a core standard cell device, applying at least a first layer of metal within the gate electrode pitch to form a portion of a resistor, and applying at least a second layer of metal to couple to the first layer of metal to form another portion of the resistor.