Abstract:
A reticle for use in an extreme ultraviolet (euv) lithography tool includes a trench formed in the opaque border formed around the image field of the reticle. The trench is coated with an absorber material. The reticle is used in an euv lithography tool in conjunction with a reticle mask and the positioning of the reticle mask and the presence of the trench combine to prevent any divergent beams of radiation from reaching any undesired areas on the substrate being patterned. In this manner, only the exposure field of the substrate is exposed to the euv radiation. Pattern integrity in neighboring fields is maintained.
Abstract:
An apparatus for cleaning an electrostatic reticle holder used in a lithography system includes a chamber for providing a low pressure environment for the electrostatic reticle holder and an ultrasound transducer configured to apply ultrasound waves to the electrostatic reticle holder. The apparatus further includes a controller configured to control the ultrasound transducer and a gas flow controller. The gas flow controller is configured to enable pressurizing or depressurizing the chamber.
Abstract:
A reticle for use in an extreme ultraviolet (euv) lithography tool includes a trench formed in the opaque border formed around the image field of the reticle. The trench is coated with an absorber material. The reticle is used in an euv lithography tool in conjunction with a reticle mask and the positioning of the reticle mask and the presence of the trench combine to prevent any divergent beams of radiation from reaching any undesired areas on the substrate being patterned. In this manner, only the exposure field of the substrate is exposed to the euv radiation. Pattern integrity in neighboring fields is maintained.
Abstract:
A single-shot metrology for direct inspection of an entirety of the interior of an EUV vessel is provided. An EUV vessel including an inspection tool integrated with the EUV vessel is provided. During an inspection process, the inspection tool is moved into a primary focus region of the EUV vessel. While the inspection tool is disposed at the primary focus region and while providing a substantially uniform and constant light level to an interior of the EUV vessel by way of an illuminator, a panoramic image of an interior of the EUV vessel is captured by way of a single-shot of the inspection tool. Thereafter, a level of tin contamination on a plurality of components of the EUV vessel is quantified based on the panoramic image of the interior of the EUV vessel. The quantified level of contamination is compared to a KPI, and an OCAP may be implemented.
Abstract:
An apparatus for cleaning an electrostatic reticle holder used in a lithography system includes a chamber for providing a low pressure environment for the electrostatic reticle holder and an ultrasound transducer configured to apply ultrasound waves to the electrostatic reticle holder. The apparatus further includes a controller configured to control the ultrasound transducer and a gas flow controller. The gas flow controller is configured to enable pressurizing or depressurizing the chamber.
Abstract:
A method and apparatus for ultraviolet (UV) and extreme ultraviolet (EUV) lithography patterning is provided. A UV or EUV light beam is generated and directed to the surface of a substrate disposed on a stage and coated with photoresist. A laminar flow of a layer of inert gas is directed across and in close proximity to the substrate surface coated with photoresist during the exposure, i.e. lithography operation. The inert gas is exhausted quickly and includes a short resonance time at the exposure location. The inert gas flow prevents flue gasses and other contaminants produced by outgassing of the photoresist, to precipitate on and contaminate other features of the lithography apparatus.
Abstract:
An extreme ultraviolet radiation source apparatus includes a chamber including at least a droplet generator, a nozzle of the droplet generator, and a dry ice blasting assembly. The droplet generator includes a reservoir for a molten metal, and the nozzle has a first end connected to the reservoir and a second opposing end where molten metal droplets emerge from the nozzle. The dry ice blasting assembly includes a blasting nozzle, a blasting air inlet and a blaster carbon dioxide (CO2) inlet. The blasting nozzle is disposed inside the chamber. The blasting nozzle is arranged to direct a pressurized air stream and dry ice particles at the nozzle of the droplet generator.
Abstract:
A system and method of compensating for local focus errors in a semiconductor process. The method includes providing a reticle and applying, at a first portion of the reticle, a step height based on an estimated local focus error for a first portion of a wafer corresponding to the first portion of the reticle. A multilayer coating is formed over the reticle and an absorber layer is formed over the multilayer coating. A photoresist is formed over the absorber layer. The photoresist is patterned, an etch is performed of the absorber layer and residual photoresist is removed.
Abstract:
An extreme ultraviolet radiation source apparatus includes a chamber including at least a droplet generator, a nozzle of the droplet generator, and a dry ice blasting assembly. The droplet generator includes a reservoir for a molten metal, and the nozzle has a first end connected to the reservoir and a second opposing end where molten metal droplets emerge from the nozzle. The dry ice blasting assembly includes a blasting nozzle, a blasting air inlet and a blaster carbon dioxide (CO2) inlet. The blasting nozzle is disposed inside the chamber. The blasting nozzle is arranged to direct a pressurized air stream and dry ice particles at the nozzle of the droplet generator.
Abstract:
A single-shot metrology for direct inspection of an entirety of the interior of an EUV vessel is provided. An EUV vessel including an inspection tool integrated with the EUV vessel is provided. During an inspection process, the inspection tool is moved into a primary focus region of the EUV vessel. While the inspection tool is disposed at the primary focus region and while providing a substantially uniform and constant light level to an interior of the EUV vessel by way of an illuminator, a panoramic image of an interior of the EUV vessel is captured by way of a single-shot of the inspection tool. Thereafter, a level of tin contamination on a plurality of components of the EUV vessel is quantified based on the panoramic image of the interior of the EUV vessel. The quantified level of contamination is compared to a KPI, and an OCAP may be implemented.