Abstract:
Methods and system for detecting hotspots in semiconductor wafer are provided. At least one semiconductor wafer is inspected to detect a plurality of hotspots of each die in the semiconductor wafer, wherein each of the hotspots has defect coordinates in a layout of the die. The hotspots of the dies are stacked in the layout according to the defect coordinates of the hotspots. A common pattern is obtained according to the stacked hotspots corresponding to a location with specific coordinates in the layout. It is determined whether the common pattern is a known pattern having an individual identification (ID) code. A new ID code is assigned to the common pattern when the common pattern is an unknown pattern.
Abstract:
The present disclosure describes a method to form alignment marks on or in the top layer of an extreme ultraviolet (EUV) mask blank without the use of photolithographic methods. For example, the method can include forming a metal structure on the top layer of the EUV mask blank by dispensing a hexacarbonylchromium vapor on the top layer of the EUV mask and exposing the hexacarbonylchromium vapor to an electron-beam. The hexacarbonylchromium vapor is decomposed to form the metal structure at an area which is proximate to where the hexacarbonylchromium vapors interact with the electron-beam. In another example, the method can include forming a patterned structure in the top layer of an EUV mask blank with the use of an etcher aperture and an etching process.
Abstract:
A tin (Sn) auto-filling device and system provided to provide new liquid Sn to an inner sidewall surface of a rotation crucible. A laser is exposed to the liquid Sn at the inner sidewall surface of the rotation crucible to generate extreme-ultraviolet-light (EUV) that is utilized to process workpieces within a semiconductor manufacturing plant (FAB). The auto-filling device automatically refills as the liquid Sn at the inner sidewall surface of the rotation crucible is consumed due to the liquid Sn at the inner sidewall surface of the rotation crucible being exposed to the laser.
Abstract:
A method comprises: (a) transforming a layout of a layer of an integrated circuit (IC) or micro electro-mechanical system (MEMS) to a curvilinear mask layout; (b) replacing at least one pattern of the curvilinear mask layout with a previously stored fracturing template having approximately the same shape as the pattern, to form a fractured IC or MEMS layout; and (c) storing, in a non-transitory storage medium, an e-beam generation file including a representation of the fractured IC or MEMS layout, to be used for fabricating a photomask.
Abstract:
A photovoltaic device manufacturing method is disclosed. Methods include manufacturing a photovoltaic cell using nanoimprint technology to define individual cell units of the photovoltaic device. The methods can include providing a substrate; forming a first conductive layer over the substrate; forming first grooves in the first conductive layer using a nanoimprint and etching process; forming an absorption layer over the first conductive layer, the absorption layer filling in the first grooves; forming second grooves in the absorption layer using a nanoimprint process; forming a second conductive layer over the absorption layer, the second conductive layer filling in the second grooves; and forming third grooves in the second conductive layer and the absorption layer, thereby defining a photovoltaic cell unit.