Abstract:
Methods for analyzing electromigration (EM) in an integrated circuit (IC) are provided. The layout of the IC is obtained. A metal segment is selected from the layout according to the current simulation result of the IC. It is determined whether to relax the EM rule on the metal segment according to the number of vias over the metal segment in the layout. The vias are in contact with the metal segment.
Abstract:
A method is disclosed that includes the operations outlined below. A first criteria is determined to be met when directions of a first current and a second current around a first end and a second end of a metal segment respectively are opposite, in which the metal segment is a part of a power rail in at least one design file of a semiconductor device and is enclosed by only two terminal via arrays. A second criteria is determined to be met when a length of the metal segment is not larger than a electromigration critical length. The metal segment is included in the semiconductor device with a first current density limit depending on the length of the metal segment when the first and the second criteria are met.
Abstract:
The present disclosure, in some embodiments, relates to an electromigration sign-off tool. The tool includes electronic memory configured to store an integrated chip design and an environmental temperature having a same value corresponding to a plurality of interconnect wires within the integrated chip design. An adder is configured to add the environmental temperature to a plurality of real temperatures to determine a plurality of actual temperatures having different values corresponding to different ones of the plurality of interconnect wires. The plurality of real temperatures account for Joule heating on the plurality of interconnect wires. An average current limit calculation element is configured to determine an average current limit at a first one of the plurality of actual temperatures. A comparator is configured to determine an electromigration violation on a first interconnect wire by comparing the average current limit to an average current of the first interconnect wire.
Abstract:
A FIT evaluation method for an IC is provided. The FIT evaluation method includes accessing data representing a layout of the IC comprising a number of metal lines and a number of VIAs; picking a number of nodes along the metal lines; dividing each of the metal lines into a number of metal segments based on the nodes; and determining a FIT value for each of the metal segments or VIAs to verify the layout and fabricate the IC.
Abstract:
Power grids of an IC are provided. A power grid includes first power traces disposed in a first metal layer and parallel to a first direction, second power traces disposed in a second metal layer and parallel to a second direction that is perpendicular to the first direction, and third power traces disposed in the first metal layer parallel to the first direction. The first power traces arranged in the same straight line are separated from each other by a plurality of first gaps. The third power traces arranged in the same straight line are separated from each other by a plurality of second gaps. Each first gap is surrounded by the two adjacent third power traces. Each second gap is surrounded by the two adjacent first power traces. The first power traces are coupled to the third power traces via the second power traces.
Abstract:
A method is disclosed that includes the operations outlined below. An effective current pulse width of a maximum peak is determined based on a waveform function of a current having multiple peaks within a waveform period in a metal segment of a metal line in at least one design file of a semiconductor device to compute a duty ratio between the effective current pulse width and the waveform period. A maximum direct current limit of the metal segment is determined according to physical characteristics of the metal segment. An alternating current electromigration (AC EM) current limit is determined according to a ratio between the maximum direct current limit and a function of the duty ratio. The metal segment is included with the physical characteristics in the at least one design file when the maximum peak of the current does not exceed the AC EM current limit.
Abstract:
A circuit is disclosed that includes a plurality of voltage control circuits and a control module. Each of the voltage control circuits is controlled by a control signal. The control module is configured to generate the control signal and to determine a voltage level or a pulse width of the control signal in accordance with a current process corner condition of the voltage control circuits and at least one of first predetermined data and second predetermined data.
Abstract:
The present disclosure relates to a method of performing electromigration sign-off. The method includes determining a change in temperature due to joule heating from an RMS current of a first interconnect. The change in temperature due to joule heating is added to a change in temperature due to device self-heating to determine a first change in real temperature. A first average current limit is determined for the first interconnect using the first change in real temperature. A first average current on the first interconnect is compared to the first average current limit to determine if a first electromigration violation is present on the first interconnect. A second average current is determined for a second interconnect using a second change in real temperature. The second average current is compared to a second average current limit to determine if a second electromigration violation is present on the second interconnect.
Abstract:
The present disclosure relates to a method of performing electromigration sign-off. The method includes determining a change in temperature due to joule heating from an RMS current of a first interconnect. The change in temperature due to joule heating is added to a change in temperature due to device self-heating to determine a first change in real temperature. A first average current limit is determined for the first interconnect using the first change in real temperature. A first average current on the first interconnect is compared to the first average current limit to determine if a first electromigration violation is present on the first interconnect. A second average current is determined for a second interconnect using a second change in real temperature. The second average current is compared to a second average current limit to determine if a second electromigration violation is present on the second interconnect.
Abstract:
The present disclosure, in some embodiments, relates to an electromigration sign-off tool. The tool includes electronic memory configured to store an integrated chip design and an environmental temperature having a same value corresponding to a plurality of interconnect wires within the integrated chip design. An adder is configured to add the environmental temperature to a plurality of real temperatures to determine a plurality of actual temperatures having different values corresponding to different ones of the plurality of interconnect wires. The plurality of real temperatures account for Joule heating on the plurality of interconnect wires. An average current limit calculation element is configured to determine an average current limit at a first one of the plurality of actual temperatures. A comparator is configured to determine an electromigration violation on a first interconnect wire by comparing the average current limit to an average current of the first interconnect wire.