Abstract:
A semiconductor device includes a substrate; a first thermoelectric conduction leg, disposed on the substrate, and doped with a first type of dopant; a second thermoelectric conduction leg, disposed on the substrate, and doped with a second type of dopant, wherein the first and second thermoelectric conduction legs are spatially spaced from each other but disposed along a common row on the substrate; and a first intermediate thermoelectric conduction structure, disposed on a first end of the second thermoelectric conduction leg, and doped with the first type of dopant.
Abstract:
A semiconductor device includes a substrate; a first thermoelectric conduction leg, disposed on the substrate, and doped with a first type of dopant; a second thermoelectric conduction leg, disposed on the substrate, and doped with a second type of dopant, wherein the first and second thermoelectric conduction legs are spatially spaced from each other but disposed along a common row on the substrate; and a first intermediate thermoelectric conduction structure, disposed on a first end of the second thermoelectric conduction leg, and doped with the first type of dopant.
Abstract:
Disclosed is a vacuum chuck and a method for securing a warped semiconductor substrate during a semiconductor manufacturing process so as to improve its flatness during a semiconductor manufacturing process. For example, a semiconductor manufacturing system includes: a vacuum chuck configured to hold a substrate, wherein the vacuum chuck comprises, a plurality of vacuum grooves located on a top surface of the vacuum chuck, wherein the top surface is configured to face the substrate; and a plurality of flexible seal rings disposed on the vacuum chuck and extending outwardly from the top surface, wherein the plurality of flexible seal rings are configured to directly contact a bottom surface of the substrate and in adjacent to the plurality of vacuum grooves so as to form a vacuum seal between the substrate and the vacuum chuck, and wherein each of the plurality of flexible seal rings has a zigzag cross section.
Abstract:
Disclosed is a vacuum chuck and a method for securing a warped semiconductor substrate during a semiconductor manufacturing process so as to improve its flatness during a semiconductor manufacturing process. For example, a semiconductor manufacturing system includes: a vacuum chuck configured to hold a substrate, wherein the vacuum chuck comprises, a plurality of vacuum grooves located on a top surface of the vacuum chuck, wherein the top surface is configured to face the substrate; and a plurality of flexible seal rings disposed on the vacuum chuck and extending outwardly from the top surface, wherein the plurality of flexible seal rings are configured to directly contact a bottom surface of the substrate and in adjacent to the plurality of vacuum grooves so as to form a vacuum seal between the substrate and the vacuum chuck, and wherein each of the plurality of flexible seal rings has a zigzag cross section.
Abstract:
A micro-electro mechanical system (MEMS) device is provided. The MEMS device includes a cap substrate and a MEMS substrate bonded with the cap substrate. The MEMS substrate includes a first movable element and a second movable element. The MEMS device also includes a first closed chamber between the MEMS substrate and the cap substrate, and the first movable element is in the first closed chamber. The MEMS device further includes an outgassing layer in the first closed chamber. In addition, the MEMS device includes a second closed chamber between the MEMS substrate and the cap substrate, and the second movable element is in the second closed chamber.
Abstract:
A structure and a formation method of a micro-electro mechanical system (MEMS) device are provided. The MEMS device includes a cap substrate and a MEMS substrate bonded with the cap substrate. The MEMS substrate includes a first movable element and a second movable element. The MEMS device also includes a first enclosed space surrounded by the MEMS substrate and the cap substrate, and the first movable element is in the first enclosed space. The MEMS device further includes a second enclosed space surrounded by the MEMS substrate and the cap substrate, and the second movable element is in the second enclosed space. In addition, the MEMS device includes a pressure-changing layer in the first enclosed space.