Abstract:
A method of preparing a thermoplastic composition is provided. The method includes the following steps. A polyetherimide or a polyphenylene sulfide is provided. A polyimide is provided, wherein the glass transition temperature of the polyimide is between 128° C. and 169° C., the 10% thermogravimetric loss temperature of the polyimide is between 490° C. and 534° C., and when the polyimide is dissolved in N-methyl-2-pyrrolidone and the solid content of the polyimide is 30 wt %, the viscosity of the polyimide is between 100 cP and 250 cP. A melt process is performed to mix the polyetherimide and the polyimide or mix the polyphenylene sulfide and the polyimide to form a thermoplastic composition. Further, a thermoplastic composition is also provided.
Abstract:
A preparation method of separation membrane is provided. First, a polyimide composition including a dissolvable polyimide, a crosslinking agent and a solvent is provided. The dissolvable polyimide is represented by formula 1: wherein B is a tetravalent organic group derived from a tetracarboxylic dianhydride containing aromatic group, A is a divalent organic group derived from a diamine containing aromatic group, A′ is a divalent organic group derived from a diamine containing aromatic group and carboxylic acid group, and 0.1≤X≤0.9. The crosslinking agent is an aziridine crosslinking agent, an isocyanate crosslinking agent, an epoxy crosslinking agent, a diamine crosslinking agent, or a triamine crosslinking agent. A crosslinking process is performed on the polyimide composition. The polyimide composition which has been subjected to the crosslinking process is coated on a substrate to form a polyimide membrane. A wet phase inversion process is performed on the polyimide membrane.
Abstract:
A preparation method of separation membrane is provided. First, a polyimide composition including a dissolvable polyimide, a crosslinking agent, and a solvent is provided. The dissolvable polyimide is represented by formula 1: wherein B is a tetravalent organic group derived from a tetracarboxylic dianhydride containing aromatic group, A is a divalent organic group derived from a diamine containing aromatic group, A′ is a divalent organic group derived from a diamine containing aromatic group and carboxylic acid group, and 0.1≤X≤0.9. The crosslinking agent is an aziridine crosslinking agent, an isocyanate crosslinking agent, an epoxy crosslinking agent, a diamine crosslinking agent, or a triamine crosslinking agent. A crosslinking process is performed on the polyimide composition. The polyimide composition which has been subjected to the crosslinking process is coated on a substrate to form a polyimide membrane. A dry phase inversion process is performed on the polyimide membrane.
Abstract:
A poly(amide-imide) is provided. The poly(amide-imide) is represented by formula (1), wherein R is a C6 aryl group, a C7-C8 aralkyl group, a C2-C6 alkoxyalkyl group, or a C3-C18 alkyl group; and 0.02≤X≤0.5.
Abstract:
A meltblown nonwoven fabric is provided. The meltblown nonwoven fabric includes a plurality of meltblown fibers adhered to each other. The material of each of the meltblown fibers includes a polyetherimide and a polyimide, or the material of each of the meltblown fibers includes a polyphenylene sulfide and a polyimide, wherein the glass transition temperature of the polyimide is between 128° C. and 169° C., the 10% thermogravimetric loss temperature of the polyimide is between 490° C. and 534° C., and when the polyimide is dissolved in N-methyl-2-pyrrolidone and the solid content of the polyimide is 30 wt %, the viscosity of the polyimide is between 100 cP and 250 cP.
Abstract:
A temperature-responsive material having a structure represented by formula (I): is provided, where in formula (I), X has a structure represented by formula (i) or formula (ii): x and y are in a molar ratio of 9:1 to 1:3, n is an integer of 7 to 120, and m is an integer of 10 to 1,000.
Abstract:
A composition for preparing a polyetherimide/polyester blend chip includes a polyetherimide powder and a polyester powder, in which the polyetherimide powder has an amount greater than 70 wt % and less than or equal to 90 wt % based on a total weight of the polyetherimide powder and the polyester powder, and the polyester powder has an amount greater than or equal to 10 wt % and less than 30 wt % based on the total weight of the polyetherimide powder and the polyester powder. The polyetherimide/polyester blend chip made of the composition is amorphous.
Abstract:
A manufacturing method for a transparent fiber is provided. The method includes forming a spinning solution containing a polyimide polymer in an organic solvent. The polydispersity index (PDI) of the polyimide polymer is 1.3˜2.6. The spinning solution is used to perform a dry-jet wet spinning step to form a plurality of fibers. Furthermore, the plurality of fibers are subjected to a thermal drawing step to form a plurality of transparent fibers, wherein the temperature of the thermal drawing step is controlled from 215° C. to 350° C. The manufacturing method for a transparent fiber provided in the present invention makes use of a polyimide polymer material and utilizes a dry-jet wet spinning step and a thermal drawing step, which allows the formation of a transparent and high strength polyimide fiber.
Abstract:
A functional resin material is manufactured by the following reagents including a polyol, a polyamine, a first cross-linking agent, a second cross-linking agent, and a nanocellulose. Each of the first cross-linking agent and the second cross-linking agent includes an isocyanate block. The nanocellulose includes a repeating unit represented by formula (1),