摘要:
A thin-film semiconductor device includes a gate electrode formed above a substrate; a gate insulating film formed to cover the gate electrode; a semiconductor layer formed above the gate insulating film and having a channel region; a channel protective layer formed above the semiconductor layer and containing an organic material which includes silicon, oxygen, and carbon; an interfacial layer which is formed in contact with the channel protective layer between the semiconductor layer and the channel protective layer, and which includes carbon as a major component, the carbon originating from the organic material; and a source electrode and a drain electrode which are electrically connected to the semiconductor layer.
摘要:
A thin-film semiconductor device includes a gate electrode formed above a substrate; a gate insulating film formed to cover the gate electrode; a semiconductor layer formed above the gate insulating film and having a channel region; a channel protective layer formed above the semiconductor layer and containing an organic material which includes silicon, oxygen, and carbon; an interfacial layer which is formed in contact with the channel protective layer between the semiconductor layer and the channel protective layer, and which includes carbon as a major component, the carbon originating from the organic material; and a source electrode and a drain electrode which are electrically connected to the semiconductor layer.
摘要:
In the thin-film transistor device: the stacked thickness of either a source electrode or a drain electrode and a corresponding one of silicon layers is the same value or a value close to the same value as the stacked thickness of a first channel layer and a second channel layer; the stacked thickness of the first channel layer and the second channel layer is the same in a region between the source electrode and the drain electrode and above the source electrode and the drain electrode; the first channel layer and the second channel layer are sunken in the region between the source electrode and the drain electrode, following a shape between the source electrode and the drain electrode; and the gate electrode has one region overlapping with the source electrode and an other region overlapping with the drain electrode.
摘要:
Provided is a method of manufacturing a TFT substrate for preventing characteristics of a native oxide layer in a boundary between a microcrystal semiconductor layer and an amorphous semiconductor layer from being degraded. The method includes forming a gate electrode, forming a gate insulating film, modifying the formed first amorphous silicon thin film into a first crystalline silicon thin film, removing a silicon oxide layer on the surface of the first crystalline silicon thin film, forming the second amorphous silicon thin film, and dry etching the first crystalline silicon thin film and the second amorphous silicon thin film, and it is determined whether or not the in-process TFT substrate after the dry etching is returned to the processes after the dry etching by measuring the emission intensity of radicals in plasma during the dry etching and detecting the presence or absence of the silicon oxide layer in the boundary.
摘要:
There is provided a display apparatus configured by stacking a drive circuit substrate and a light-emitting substrate. Electrodes of the substrates are accurately aligned to be electrically connected to each other. A display apparatus is configured by stacking a drive circuit substrate having a drive circuit and a light-emitting substrate having a light-emitting unit including a pixel electrode to cause the drive circuit substrate and the light-emitting substrate to face each other, wherein on a stacked plane between the drive circuit substrate and the light-emitting substrate, an intermediate electrode connected to the light-emitting unit of the light-emitting substrate and a connection electrode connected to the drive circuit and the drive circuit substrate are electrically connected to each other, and the intermediate electrode is elongated in a direction parallel to or perpendicular to a longitudinal direction of the pixel electrode on the stacked plane.
摘要:
There are installed, on a surface of an window on a vacuum chamber side, an insulating side face portion, which extends radially from the center of a generating unit of a plasma generating device and is disposed so as to be orthogonal to a substrate mounting face of an electrode, and a conductive layer, which is made of a material identical to that for the substrate and placed in an area corresponding to the generating unit on the surface of the window on the vacuum chamber side.
摘要:
An organic EL display panel having a functional layer with a uniform film thickness is provided. The organic EL display panel of the present invention contains an anode electrode set on a substrate; line-state banks set on the substrate on which the anode electrode is set and defining a line-state region; a hole transport layers arranged in matrix state on the substrate, the hole transport layer being set in the line-state region; a line-state interlayer set in the line-state region; a line-state organic EL layer set in the line-state region; and a cathode electrode provided on the organic EL layer, and the bank contains a fluorine resin.
摘要:
An organic EL element having a functional layer with a uniform film thickness is provided. The organic EL element of the present invention contains a substrate; an anode electrode set on the substrate; an organic EL layer set on the anode electrode; a cathode electrode set on the organic EL layer; and a bank having a forward tapered shape, which define the organic EL layer. The bank contains a fluorine resin, the fluorine concentration at a top of the bank is higher than the fluorine concentration at a bottom surface of the bank, and a height of the top of the bank from the substrate is 0.8 to 1.2 μm.
摘要:
Provided is a semiconductor device comprising an organic semiconductor element A and an organic semiconductor element B, wherein the organic semiconductor element A has a source electrode and a drain electrode disposed on a surface of a substrate; a channel gap disconnecting the source electrode and the drain electrode; an organic semiconductor layer disposed on the source electrode, the drain electrode and the channel gap; an insulating film disposed on the organic semiconductor layer; a gate electrode disposed on the insulating film; a bank defining the organic semiconductor layer; a and groove through the bank, a distance between the apex of the bank and the surface of a substrate is greater than a distance between the apex of the channel gap and the surface of the substrate, and the organic semiconductor element B has a source electrode or a drain electrode connected with the gate electrode of the organic semiconductor element A via the groove through the bank of the organic semiconductor element A.
摘要:
An organic EL display panel having a functional layer with a uniform film thickness is provided. The organic EL display panel of the present invention contains anode electrodes set on the substrate; organic EL layers set on the anode electrodes; line-state banks defining the organic EL layers in a line-state region; second banks defining two or more regions in the line-state region. The line-state banks and the second banks contain a fluorine resin, a fluorine concentration of the fluorine resin gradually changes along a thickness direction of each of the line-state bank and the second bank, and the fluorine concentration at a top of each of the line-state bank and the second bank is higher than the fluorine concentration at a bottom surface of each of the line-state bank and the second bank.