Abstract:
It is an object of the present invention to provide a trim for vehicles capable of reducing the number of parts and thereby reducing the cost when a plurality of shock absorbing portions are required to have different hardnesses from each other. The trim for vehicles according to the present invention is a door trim 20 including a lower board 21, and a pull handle 40 mounted on the lower board 21, further including a plurality of shock absorbing portions with different hardnesses capable of absorbing shock energy, wherein an extension portion 50 of the plurality of shock absorbing portions is formed integrally with the pull handle 40, and the extension portion 50 has a shape extending downward from the pull handle 40.
Abstract:
This vibration actuator has a movable body having a coil, a fixed body having magnets, and a shaft part that rotatably supports the movable body, wherein the movable body reciprocally and rotationally vibrates around the shaft part with respect to the fixed body through the interaction of the coil and the magnets. The magnets are arranged in a direction perpendicular to the axial direction of the shaft part and each have two magnetic poles that face the movable body in the coil axial direction of the coil, the shaft part supports the movable body at a position shifted from the center position of the movable body in a direction perpendicular to the axial direction of the shaft part, and the coil axis of the coil of the movable body is located at a position facing a switching position of the magnetic pole of the magnet.
Abstract:
There is provided steel for wheel having a chemical composition consisting of, by mass percent, C: 0.65 to 0.84%, Si: 0.02 to 1.00%, Mn: 0.50 to 1.90%, Cr: 0.02 to 0.50%, V: 0.02 to 0.20%, and S: 0.04% or less, in which 34≦2.7+29.5×C+2.9×Si+6.9×Mn+10.8×Cr+30.3×Mo+44.3×V≦43, and 0.76×exp(0.05×C)×exp(1.35×Si)×exp(0.38×Mn)×exp(0.77×Cr)×exp(3.0×Mo)×exp(4.6×V)25, the balance being Fe and impurities, and the impurities containing P: 0.05% or less, Cu: 0.20% or less, and Ni: 0.20% or less. This steel for wheel is excellent in balance between the wear resistance, rolling contact fatigue resistance and the spalling resistance, and can give a long life to the wheel.
Abstract:
A method for manufacturing a semiconductor device is provided with: a step of preparing a semiconductor wafer (22) in a state where the circumference of the semiconductor wafer, which has been divided into semiconductor device parts, is adhered on a dicing sheet (21) supported by a wafer ring (23); a step of fixing the wafer ring (23) after transferring the wafer ring to a table (14) where laser printing is to be performed; and a step of marking on the main surface where the semiconductor material of the semiconductor device parts which configure the semiconductor wafer (22) is exposed, by radiating laser beams through the dicing sheet and an adhesive layer.
Abstract:
A railway car wheel comprises a rim having a flange and a tread portion. The tread portion contains 0.35-0.55% C and has a Vickers hardness of at least 360 and comprises a bainite structure, a tempered martensite structure, or a mixture of both.
Abstract:
A method for manufacturing a semiconductor device is provided with: a step of preparing a semiconductor wafer (22) in a state where the circumference of the semiconductor wafer, which has been divided into semiconductor device parts, is adhered on a dicing sheet (21) supported by a wafer ring (23); a step of fixing the wafer ring (23) after transferring the wafer ring to a table (14) where laser printing is to be performed; and a step of marking on the main surface where the semiconductor material of the semiconductor device parts which configure the semiconductor wafer (22) is exposed, by radiating laser beams through the dicing sheet and an adhesive layer.
Abstract:
A disc brake for railway vehicles includes a brake disc fixed to a wheel or an axle of a railway vehicle and a brake lining configured to be pressed against a frictional surface of the brake disc by a brake caliper. The brake lining includes a plurality of friction members arranged to be spaced from each other, each of the friction members having a surface that faces the frictional surface of the brake disc, a metallic backing secured to back surfaces of the friction members, and a base plate supporting the friction members on the back surface side via spring members. The base plate is mounted to a brake caliper; wherein the friction members are provided in pairs with each pair being formed by two adjacent ones of the friction members, and the metallic backing is a one-piece member provided for each pair of the friction members.
Abstract:
A railway car wheel comprises a rim having a flange and a tread portion. The tread portion contains 0.35-0.55% C and has a Vickers hardness of at least 360 and comprises a bainite structure, a tempered martensite structure, or a mixture of both.
Abstract:
Provided is a vibration actuator including: a movable body including a coil and a core around which the coil is wound; a fixing body including a magnet; and a shaft part turnably supporting the movable body with respect to the fixing body on a side of the one end part of the core. The movable body reciprocatingly and rotationally vibrates around the shaft part with respect to the fixing body by cooperation between the coil to be energized and the magnet. The magnet is disposed to face the other end part of the core in an extending direction of the core when energization is not performed. The magnet includes two magnetic poles having different polarities and arranged in a reciprocating and rotational vibration direction. A weight part is disposed in a notch on a side of the other end part of the core or in the coil.
Abstract:
A disc brake for railway vehicles includes a brake disc fixed to a wheel or an axle of a railway vehicle and a brake lining configured to be pressed against a frictional surface of the brake disc by a brake caliper. The brake lining includes a plurality of friction members arranged to be spaced from each other, each of the friction members having a surface that faces the frictional surface of the brake disc, a metallic backing secured to back surfaces of the friction members, and a base plate supporting the friction members on the back surface side via spring members. The base plate is mounted to a brake caliper; wherein the friction members are provided in pairs with each pair being formed by two adjacent ones of the friction members, and the metallic backing is a one-piece member provided for each pair of the friction members.