摘要:
In formation of a source/drain region of an NMOS transistor, a gate-directional extension region of an N+ block region in an N+ block resist film prevents a well region located under the gate-directional extension region from implantation of an N-type impurity. A high resistance forming region, which is the well region having a possibility for implantation of an N-type impurity on a longitudinal extension of a gate electrode , can be formed as a high resistance forming region narrower than a conventional high resistance forming region . Thus, a semiconductor device having a partially isolated body fixed SOI structure capable of reducing body resistance and a method of manufacturing the same are obtained.
摘要:
The present invention provides a method of fabricating a semiconductor device in which deterioration in a transistor characteristic is prevented by preventing a channel stop implantation layer from being formed in an active region. A resist mask is formed so as to have an opening over a region in which a PMOS transistor is formed. Channel stop implantation is performed with energy by which ions pass through a partial isolation oxide film and a peak of an impurity profile is generated in an SOI layer, thereby forming a channel stop layer in the SOI layer under the partial isolation oxide film, that is, an isolation region. An impurity to be implanted here is an N-type impurity. In the case of using phosphorus, its implantation energy is set to, for example, 60 to 120 keV, and the density of the channel stop layer is set to 1×1017 to 1×1019/cm3. At this time, the impurity of channel stop implantation is not stopped in the SOI layer corresponding to the active region.
摘要:
In formation of a source/drain region of an NMOS transistor, a gate-directional extension region of an N+ block region in an N+ block resist film prevents a well region located under the gate-directional extension region from implantation of an N-type impurity. A high resistance forming region, which is the well region having a possibility for implantation of an N-type impurity on a longitudinal extension of a gate electrode , can be formed as a high resistance forming region narrower than a conventional high resistance forming region . Thus, a semiconductor device having a partially isolated body fixed SOI structure capable of reducing body resistance and a method of manufacturing the same are obtained.
摘要:
In formation of a source/drain region of an NMOS transistor, a gate-directional extension region of an N+ block region in an N+ block resist film prevents a well region located under the gate-directional extension region from implantation of an N-type impurity. A high resistance forming region, which is the well region having a possibility for implantation of an N-type impurity on a longitudinal extension of a gate electrode , can be formed as a high resistance forming region narrower than a conventional high resistance forming region . Thus, a semiconductor device having a partially isolated body fixed SOI structure capable of reducing body resistance and a method of manufacturing the same are obtained.
摘要:
Plural trench isolation films (4) are provided with portions of an SOI layer (3) interposed therebetween in a surface of the SOI layer (3) in a resistor region (RR) where a spiral inductor (SI) is to be provided. Resistive element (30) are formed on the trench isolation films (4), respectively. Each of the trench isolation films (4) includes a central portion which passes through the SOI layer (3) and reaches a buried oxide film (2) to include a full-trench isolation structure, and opposite side portions each of which passes through only a portion of the SOI layer (3) and is located on the SOI layer 3 to include a partial-trench isolation structure. Thus, each of the trench isolation films (4) includes a hybrid-trench isolation structure.
摘要:
Plural trench isolation films are provided with portions of an SOI layer interposed therebetween in a surface of the SOI layer in a resistor region (RR) where a spiral inductor (SI) is to be provided. Resistive elements are formed on the trench isolation films, respectively. Each of the trench isolation films includes a central portion which passes through the SOI layer and reaches a buried oxide film to include a full-trench isolation structure, and opposite side portions each of which passes through only a portion of the SOI layer and is located on the SOI layer 3 to include a partial-trench isolation structure. Thus, each of the trench isolation films includes a hybrid-trench isolation structure.
摘要:
A semiconductor device and its manufacturing method are provided which can properly avoid reduction of isolation breakdown voltage without involving adverse effects like an increase in junction capacitance. Impurity-introduced regions (11) are formed after a silicon layer (3) has been thinned through formation of recesses (14). Therefore n-type impurities are not implanted into the portions of the p-type silicon layer (3) that are located between the bottoms of element isolation insulating films (5) and the top surface of a BOX layer (2), which avoids reduction of isolation breakdown voltage. Furthermore, since the impurity-introduced regions (11) are formed to reach the upper surface of the BOX layer (2), the junction capacitance of source/drain regions (12) is not increased.
摘要:
Provided are a thin-film transistor formed by connecting polysilicon layers having different conductivity types with each other which prevents occurrence of inconvenience resulting from diffusion of impurities and a method of fabricating the same. A drain (6), a channel (7) and a source (8) are integrally formed on a surface of a second oxide film (4) by polysilicon. The drain (6) is formed to be connected with a pad layer (3) (second polycrystalline semiconductor layer) through a contact hole (5) which is formed to reach an upper surface of the pad layer (3). The pad layer (3) positioned on a bottom portion of the contact hole (5) (opening) is provided with a boron implantation region BR.
摘要:
A partial oxide film (31) with well regions formed therebeneath isolates transistor formation regions in an SOI layer (3) from each other. A p-type well region (11) is formed beneath part of the partial oxide film (31) which isolates NMOS transistors from each other, and an n-type well region (12) is formed beneath part of the partial oxide film (31) which isolates PMOS transistors from each other. The p-type well region (11) and the n-type well region (12) are formed in side-by-side relation beneath part of the partial oxide film (31) which provides isolation between the NMOS and PMOS transistors. A body region is in contact with the well region (11) adjacent thereto. An interconnect layer formed on an interlayer insulation film (4) is electrically connected to the body region through a body contact provided in the interlayer insulation film (4). A semiconductor device having an SOI structure reduces a floating-substrate effect.
摘要:
The present invention provides a method of fabricating a semiconductor device in which deterioration in a transistor characteristic is prevented by preventing a channel stop implantation layer from being formed in an active region. A resist mask is formed so as to have an opening over a region in which a PMOS transistor is formed. Channel stop implantation is performed with energy by which ions pass through a partial isolation oxide film and a peak of an impurity profile is generated in an SOI layer, thereby forming a channel stop layer in the SOI layer under the partial isolation oxide film, that is, an isolation region. An impurity to be implanted here is an N-type impurity. In the case of using phosphorus, its implantation energy is set to, for example, 60 to 120 keV, and the density of the channel stop layer is set to 1×1017 to 1×1019/cm3. At this time, the impurity of channel stop implantation is not stopped in the SOI layer corresponding to the active region.