摘要:
A proton-conductive composite electrolyte membrane, for a fuel cell, comprises a metal-oxide hydrate with proton conductivity and organic macromolecules in which an intermediate layer is formed between the metal-oxide hydrate and the first organic macromolecular electrolyte. The intermediate layer can enhance the adhesion at an interface between the metal-oxide hydrate and the organic macromolecule, and thereby the amount of methanol that penetrates along the interface can be reduced. Accordingly, the composite electrolyte membrane has both high proton conductivity and low methanol permeability, and a membrane electrode assembly that comprises the composite electrolyte membrane can produce a high output.
摘要:
The device for electrochemically manufacturing an organic hydride of the present invention is characterized by the electrode structure thereof being a structure that forms a matrix in which a metal-catalyst supporting carbon or a metal catalyst is suitably intermingled with a proton-conductive solid polymer electrolyte as catalyst layers, and the catalyst layers are formed on the front and back of a proton-conductive solid polymer electrolyte membrane on which a layer that blocks water from passing through is formed. When water or water vapor is supplied to the anode side of this electrode and a substance to be hydrogenated is supplied to the cathode side, application of a voltage between the anode and the cathode causes an electrolysis reaction to the water to occur at the anode and a hydrogenation reaction to the substance to be hydrogenated to occur at the cathode, producing the organic hydride.
摘要:
The present invention provides an electrolyte membrane with high proton conductivity and low methanol permeability, a high output MEA and DMFC. The electrolyte membrane is characterized by comprising a metal oxide hydrate having proton conductivity and an organic polymer having proton conductivity. A preferable metal oxide hydrate is zirconium oxide hydrate or tungsten oxide hydrate. The composite electrolyte membrane has an ion exchange capacity of 0.75 to 1.67 meq/g as a preferable range. The composite electrolyte membrane constituted by the metal oxide hydrate and the organic polymer is provided with high proton conductivity and low methanol permeability so that MEA for DMFC with high output is provided.
摘要:
A fuel cell anode for oxidizing fuel, a cathode for reducing oxygen and a solid polymer electrolyte membrane sandwiched between the anode and the cathode, wherein the cathode comprises a catalyst supporter having a catalyst metal and a material having a polymer proton conductivity and a material having water-repellency, the material having water-repellency being electric conductive. The material having water-repellency is a carbonaceous material such as graphite intercalation compound, activated charcoal, carbonaceous material having water-repellent function groups. The disclosure is also related to a membrane electrode assembly comprising an anode catalyst layer, a proton conductive polymer electrolyte membrane and a cathode catalyst layer, the anode catalyst layer, the membrane and the cathode catalyst layer being laminated and united, wherein the catalyst layers contain carbon supporting metal catalyst and a water-repellent material, the water-repellent material being electrically conductive.
摘要:
The zirconium oxide hydrate particles of the present invention are represented by the formula ZrO2.nH2O and have a mean primary particle size of 0.5 nm or more and 5 nm or less, and “n” in the formula represents a number greater than 2.5. Moreover, the method for producing of zirconium oxide hydrate particles of the present invention includes the step of preparing zirconium oxide hydrate particles by adding an aqueous zirconium salt solution to an aqueous alkaline solution while controlling the pH to 7.0 or more and 13.0 or less, and the step of subjecting the zirconium oxide hydrate particles to a hydrothermal treatment in the presence of water at a temperature of 50° C. or more and less than 110° C. for 3 hours or more.
摘要:
When using a measurement of a crossover current density by the Gotesfeld method or a measurement of a methanol permeation coefficient by gas chromatography or by liquid chromatography, a measure for crossover amount may be given but the interrelation with a crossover loss is not clearly known and thus, it could not be possible to evaluate a degree of the crossover loss. The present invention has for its object the provision of a novel measuring method that is able to measure a methanol crossover loss directly.The measuring method is characterized by measuring a crossover loss of MEA for methanol fuel cell from a difference between a voltage when a cathode catalyst layer is not influenced by methanol crossover and a voltage when the cathode catalyst layer is influenced by the methanol crossover.
摘要:
The zirconium oxide hydrate particles of the present invention are represented by the formula ZrO2.nH2O and have a mean primary particle size of 0.5 nm or more and 5 nm or less, and “n” in the formula represents a number greater than 2.5. Moreover, the method for producing of zirconium oxide hydrate particles of the present invention includes the step of preparing zirconium oxide hydrate particles by adding an aqueous zirconium salt solution to an aqueous alkaline solution while controlling the pH to 7.0 or more and 13.0 or less, and the step of subjecting the zirconium oxide hydrate particles to a hydrothermal treatment in the presence of water at a temperature of 50° C. or more and less than 110° C. for 3 hours or more.
摘要:
A PEFC (polymer electrolyte fuel cell) has a cathode separator for a PEFC working at 100° C. or higher. The cathode separator has gas passages to fed oxidant gas. Each of the passages increases the sectional area thereof with going down stream along with gas flow. That is, the PEFC has the cathode separator whose passage is configured that the downstream side sectional area thereof is larger than the upstream side sectional area thereof. In addition, the area of contact between the rib surface of the anode separator and a diffusion layer of an anode is larger than the area of contact between the rib surface of the cathode separator and a diffusion layer of the cathode.
摘要:
A composite electrolyte membrane uses a metal-oxide hydrate which has a number of hydration water molecules of 2.7 or more and 10 or less and/or which is in the form of particles having a particle diameter of 1 nm or more and 10 nm or less. The composite electrolyte membrane exhibits its expected original performance, has both a high proton conductivity and a low methanol permeability, and provides a high-output membrane electrolyte assembly for a fuel cell.
摘要:
A membrane-electrode assembly comprising a cathode catalyst layer for reducing an oxidant gas, a polymer electrolyte membrane and an anode catalyst layer, the polymer electrolyte membrane being sandwiched between the catalyst layers, wherein the cathode catalyst layer exhibits super-water-repellency. The disclosure is also concerned with a method of manufacturing the membrane-electrode assembly and a fuel cell using the membrane-electrode assembly.