摘要:
A method and system are provided for thermal management of a portable computing apparatus. Accelerometers are provided to detect changes in attitude, and temperature sensors are provided to detect changes in temperature. A fan is used to cool the internal temperature of the electronic components of the computer. In response to lift of the computer from a stationary surface, the computer may transition to an alternative state of operation. The transition may include the change of the speed of the fan and/or adjustment of the processor clock.
摘要:
A method and system are provided for thermal management of a portable computing apparatus. Accelerometers are provided to detect changes in attitude, and temperature sensors are provided to detect changes in temperature. A fan is used to cool the internal temperature of the electronic components of the computer. In response to lift of the computer from a stationary surface, the computer may transition to an alternative state of operation. The transition may include the change of the speed of the fan and/or adjustment of the processor clock.
摘要:
A method and system are provided for thermal management of a portable computing apparatus. Accelerometers are provided to detect changes in attitude, and temperature sensors are provided to detect changes in temperature. A fan is used to cool the internal temperature of the electronic components of the computer. In response to lift of the computer from a stationary surface, the computer may transition to an alternative state of operation. The transition may include the change of the speed of the fan and/or adjustment of the processor clock.
摘要:
A method and system are provided for thermal management of a portable computing apparatus. Accelerometers are provided to detect changes in attitude, and temperature sensors are provided to detect changes in temperature. A fan is used to cool the internal temperature of the electronic components of the computer. In response to lift of the computer from a stationary surface, the computer may transition to an alternative state of operation. The transition may include the change of the speed of the fan and/or adjustment of the processor clock.
摘要:
There are provided a strength evaluation method of a die casting product capable of appropriately evaluating the strength of the die casting product, and a die casting product in which the strength is evaluated by the strength evaluation method. A breakage test is performed by a simple strength tester after casting, and then, a strength reduction ratio is estimated based on an area ratio of cold flakes in a broken surface obtained by broken surface observation. Alternatively, ultrasonic flaw detection is performed for an internal defect in a predetermined range of a high stress portion of the die casting product, calculated by stress analysis in advance, and the die casting product is evaluated to have a predetermined strength when a defect ratio obtained by dividing a total area of the internal defect in the predetermined range by a total defect detection area is less than or equal to a predetermined value.
摘要:
Disclosed herein is a method for driving a storage element that has a plurality of magnetic layers and performs recording by utilizing spin torque magnetization reversal, the method including applying a pulse voltage having reverse polarity of polarity of a recording pulse voltage in application of the recording pulse voltage to the storage element.
摘要:
A storage element includes a storage layer which has magnetization perpendicular to its film surface and which retains information by a magnetization state of a magnetic substance, a magnetization pinned layer having magnetization perpendicular to its film surface which is used as the basis of the information stored in the storage layer, an interlayer of a non-magnetic substance provided between the storage layer and the magnetization pinned layer, and a cap layer which is provided adjacent to the storage layer at a side opposite to the interlayer and which includes at least two oxide layers. The storage element is configured to store information by reversing the magnetization of the storage layer using spin torque magnetization reversal generated by a current passing in a laminate direction of a layer structure including the storage layer, the interlayer, and the magnetization pinned layer.
摘要:
There is provided a memory element including a magnetic layer that includes at least one kind of element selected from a group consisting of Fe, Co, and Ni, and carbon, has a content of carbon that is equal to or greater than 3 atomic % and less than 70 atomic % with respect to a total content of Fe, Co, and Ni, and has magnetic anisotropy in a direction perpendicular to a film face; and an oxide layer that is formed of an oxide having a sodium chloride structure or a spinel structure and that comes into contact with the magnetic layer.
摘要:
A storage element includes a storage layer that stores information on the basis of a magnetization state of a magnetic material; a fixed magnetization layer that has a magnetization serving as a reference of the information stored in the storage layer; an interlayer that is formed of a nonmagnetic material and interposed between the storage layer and the fixed magnetization layer; a cap layer that is provided to be adjacent to the storage layer and opposite to the interlayer; and a metal cap layer that is provided to be adjacent to the cap layer and opposite to the storage layer.
摘要:
A magnetic memory device including a memory layer having a vertical magnetization on the layer surface, of which the direction of magnetization is changed according to information; and a reference layer provided against the memory layer, and being a basis of information while having a vertical magnetization on the layer surface, wherein the memory device memorizes the information by reversing the magnetization of the memory layer by a spin torque generated when a current flows between layers made from the memory layer, the nonmagnetization layer and the reference layer, and a coercive force of the memory layer at a memorization temperature is 0.7 times or less than a coercive force at room temperature, and a heat conductivity of a center portion of an electrode formed on one side of the memory layer in the direction of the layer surface is lower than a heat conductivity of surroundings thereof.