摘要:
The present invention is a driving method of a fuel cell in which power is generated from a liquid fuel containing fuel and oxidant by a fuel cell main assembly 5. In order to suppress the degradation of the output characteristics after the stop and storage, a start-up operation S1 which is started after a stop state in which a load is not connected the fuel cell main assembly; a recovery operation S3 in which the liquid fuel is supplied to the fuel cell main assembly 5 such that an electrode of the fuel cell main assembly is reduced after the start-up operation S1; and a normal operation S4 in which the power is supplied to an external load 20.
摘要:
Provided are a dry-state detecting method and an electronic device system for a fuel cell, which detect the dry state of an electrolyte film precisely, and a power control method for optimizing the control of a starting time on the basis of the dry state detected. The fuel cell is constituted to include an electrolyte film, and a catalyst electrode and a gas diffusion electrode disposed on the two faces of the electrolyte film. The dry-state detecting method detects the dry state on the basis of a displacement of the electrolyte film in an in-plane direction.
摘要:
A fuel cell system includes a fuel cell main body which has a solid polymer electrolytic membrane, a fuel electrode and an oxidant electrode attached to the solid electrolyte membrane; a fuel storage unit which stores liquid fuel; a polymer membrane having a proton conductivity and provided in the fuel storage unit; a concentration detection unit (a first electrode terminal and a second electrode terminal) which detects the alcohol concentration of the liquid fuel in the fuel storage unit based on the alteration of the proton conductivity of said polymer membrane; and a concentration measurement unit.
摘要:
An adhesion layer containing a second solid polymer electrolyte is disposed between a solid polymer electrolyte membrane and a fuel electrode and/or an oxidant electrode containing a first solid polymer electrolyte and a catalyst substance. The solid polymer electrolyte membrane and the adhesion layer are made of the same solid polymer electrolyte. In this manner, the adhesion at the interface between the electrode surface and the solid polymer electrolyte membrane is enhanced to implement the elevation of the cell characteristics and the elevation of the reliability of the cell.
摘要:
An adhesion layer containing a second solid polymer electrolyte is disposed between a solid polymer electrolyte membrane and a fuel electrode and/or an oxidant electrode containing a first solid polymer electrolyte and a catalyst substance. The solid polymer electrolyte membrane and the adhesion layer are made of the same solid polymer electrolyte. In this manner, the adhesion at the interface between the electrode surface and the solid polymer electrolyte membrane is enhanced to implement the elevation of the cell characteristics and the elevation of the reliability of the cell.
摘要:
Output properties of a fuel cell can be improved by using a single cell structure 1387 having an anode 102 and an oxidizing agent electrode 108 in both sides of a solid electrolyte membrane 114 and an evaporation inhibiting layer 1388 covering the surface of the cathode 108 which is not in contact with the solid electrolyte membrane 114.
摘要:
For the purpose of efficiently discharging CO2 generated therein while increasing the fuel utilization efficiency, a fuel cell comprises a solid polymer electrolyte membrane, a cathode arranged in contact with one side of the solid polymer electrolyte membrane, an anode arranged in contact with the other side of the solid polymer electrolyte membrane, a cathode collector and an anode collector respectively arranged in contact with the cathode and anode, a sealing member arranged in the rim of the solid polymer electrolyte membrane and sandwiched between the solid polymer electrolyte membrane and the anode collector, a fuel supply controlling membrane for vaporizing a liquid fuel and supplying the vaporized fuel to the anode, and a discharging unit for discharging a product produced by electrical reaction at the anode to the outside. An air vent formed in the sealing member serves as the discharging unit.
摘要:
An adhesive layer 3 is disposed between a carbon particle 2 and a catalyst substance 1 of a catalyst-supporting particle for a fuel cell containing the carbon particle 2 and the catalyst substance 1. Thereby, the catalyst-supporting particle for fuel cell can be obtained in which a contact resistance between the catalyst substance and the carbon particle supporting the same is lower, and the aggregation of the catalyst substance is suppressed. A catalyst electrode for a fuel cell and the fuel cell using the above particle have a higher output power and an excellent durability.
摘要:
The present invention provides a catalyst electrode and a manufacturing method of the same. When the catalyst electrode is used for a fuel cell, it is capable of suppressing an air, which is a by-product generated at a fuel electrode on a surface of the electrode, and quickly removing the adsorbed bubble-like air. Accordingly, the catalyst electrode is capable of increasing an effective catalyst surface of the fuel electrode and enhancing an output power of the fuel cell. Moreover, the present invention provides fuel cell and a manufacturing method of the same. The fuel cell is capable of suppressing an air, which is a by-product generated at the fuel electrode on the surface of the electrode and quickly removing the adsorbed bubble-like air. Accordingly, the fuel cell is capable of increasing an effective catalyst surface of the fuel electrode and enhancing an output power thereof. In a catalyst electrode for a fuel cell provided with a substrate and a catalyst layer which is formed on the substrate and which contains a carbon particle carrying a catalyst and a solid polymer electrolyte, the substrate or the catalyst layer contains one or more kinds of anti-foaming agent.
摘要:
The present invention provides a fuel cell which is small-sized and light-weight for mounting in a mobile device, and has a high output-density. A current-collector 421 of a fuel electrode (or a current-collector 423 of an oxidizer electrode) is bonded to a substrate 104 (or a substrate 110) of a fuel electrode 102 (or an oxidizer electrode 108) in a fuel cell 100, rendering the current-collector 421 (or the current-collector 423) to be thin and light-weight, and making it no longer necessary to use an end plate and a fastener. Fuel or oxidizer is supplied directly to a surface of the current-collector 421 or 423.