摘要:
An aluminum alloy fin material for brazing which is composed of an aluminum alloy comprising above 0.1 wt % to 3 wt % of Ni, above 1.5 wt % to 2.2 wt % of Fe, and 1.2 wt % or less of Si, and at least one selected from the group consisting of 4 wt % or less of Zn, 0.3 wt % or less of In, and 0.3 wt % or less of Sn, and further comprising, optionally, at least one selected from the group consisting of co, Cr, Zr, Ti, Cu, Mn, and Mg in given amounts, the balance being unavoidable impurities and aluminum, wherein a ratio of the grain length in the right angle direction/the grain length in the parallel direction is 1/30 or less, an electric conductivity is 50 to 55 %IACS, and a tensile strength is 170 to 280 MPa.
摘要:
An aluminum alloy brazing sheet having a four-layered structure, of sheet thickness 0.2 mm or less, and having a core alloy, a filler alloy of an Al—Si alloy on one surface of the core alloy, a sacrificial anode material of an Al—Zn alloy on the other surface of the core alloy, and an intermediate layer between the core alloy and sacrificial anode material, wherein the core alloy is composed of an Al alloy containing given amounts of Si, Fe, Mn, and Cu, with the balance being made of Al and unavoidable impurities, and wherein the intermediate layer is composed of an Al alloy containing given amounts of Si, Fe, Mn, and Cu, with the balance being made of Al and unavoidable impurities.
摘要:
An aluminum alloy heat exchanger having a tube composed of a thin aluminum alloy clad material, wherein, in the clad material, one face of an aluminum alloy core material containing Si 0.05–1.0 mass % is clad with an Al—Si-series filler material containing Si 5–20 mass %, and the other face is clad with a sacrificial material containing Zn 2–10 mass % and/or Mg 1–5 mass %, and wherein an element diffusion profile of the clad material by EPMA satisfies (1) and/or (2): L-LSi-LZn≧40(μm) (1) L-LSi-LMg≧5(μm) (2) wherein L is a tube wall thickness (μm); LSi is a position (μm) indicating an amount of Si diffused from the filler material; and LZn and LMg each represent a region (μm) indicating an amount of Zn or Mg diffused from the sacrificial material, respectively; and a method of producing the heat exchanger.
摘要:
An aluminum alloy heat exchanger having a tube composed of a thin aluminum alloy clad material, wherein, in the clad material, one face of an aluminum alloy core material containing Si 0.05-1.0 mass % is clad with an Al—Si-series filler material containing Si 5-20 mass %, and the other face is clad with a sacrificial material containing Zn 2-10 mass % and/or Mg 1-5 mass %, and wherein an element diffusion profile of the clad material by EPMA satisfies (1) and/or (2): L-LSi-LZn≧40 (μm) (1) L-LSi-LMg≧5 (μm) (2) wherein L is a tube wall thickness (μm); LSi is a position (μm) indicating an amount of Si diffused from the filler material; and LZn and LMg each represent a region (μm) indicating an amount of Zn or Mg diffused from the sacrificial material, respectively; and a method of producing the heat exchanger.
摘要:
An aluminum alloy brazing sheet which has a clad of a sacrificial anode material/a core alloy/an intermediate material/a filler alloy, wherein number density ratios N1/N2 and N1/N3 each are 1.5 or more, in which a number density ((the number of grains)/μm3) of an intermetallic compound having a sphere-equivalent grain diameter of 0.1 μm or less present in the core alloy, the intermediate material, and the sacrificial anode material, is represented by N1, N2, and N3, respectively.
摘要:
Disclosed is an aluminum alloy brazing sheet for heat exchangers, which has high strength after brazing, high corrosion resistance and excellent brazability. Specifically disclosed is an aluminum alloy brazing sheet (1a) for heat exchangers comprising a core member (2), a sacrificial member (3) formed on one side of the core member (2), and a brazing filler metal (4) formed on the other side of the core member (2) and composed of an Al—Si alloy. The sacrificial member (3) contains 0.03-0.30% by mass of Fe, 0.01-0.40% by mass of Mn, 0.4-1.4% by mass of Si, 2.0-5.5% by mass of Zn, not more than 0.05% by mass of Mg and the balance of Al and unavoidable impurities. In addition, the sacrificial member (3) has a crystal grain size of 100-400 & mgr;m after 5-minute heat treatment at 600 & ring;C during the brazing.
摘要:
Disclosed is an aluminum alloy brazing sheet for heat exchangers, which has high strength after brazing, high corrosion resistance and excellent brazability. Specifically disclosed is an aluminum alloy brazing sheet (1a) for heat exchangers comprising a core member (2), a sacrificial member (3) formed on one side of the core member (2), and a brazing filler metal (4) formed on the other side of the core member (2) and composed of an Al—Si alloy. The sacrificial member (3) contains 0.03-0.30% by mass of Fe, 0.01-0.40% by mass of Mn, 0.4-1.4% by mass of Si, 2.0-5.5% by mass of Zn, not more than 0.05% by mass of Mg and the balance of Al and unavoidable impurities. In addition, the sacrificial member (3) has a crystal grain size of 100-400 & mgr;m after 5-minute heat treatment at 600 & ring;C during the brazing.
摘要:
An aluminum alloy clad sheet for heat exchangers includes a core material, a cladding material 1, and a cladding material 2, one side and the other side of the core material being respectively clad with the cladding material 1 and the cladding material 2, the core material containing 0.5 to 1.2% of Si, 0.2 to 1.0% of Cu, 1.0 to 1.8% of Mn, and 0.05 to 0.3% of Ti, with the balance being Al and unavoidable impurities, the cladding material 1 containing 3 to 6% of Si, 2 to 8% of Zn, and at least one of 0.3 to 1.8% of Mn and 0.05 to 0.3% of Ti, with the balance being Al and unavoidable impurities, and the cladding material 2 containing 6 to 13% of Si, with the balance being Al and unavoidable impurities, the cladding material 1 serving as the outer side of the aluminum alloy clad sheet during use.
摘要:
An aluminum alloy clad sheet for heat exchangers includes a core material, a cladding material 1, and a cladding material 2, one side and the other side of the core material being respectively clad with the cladding material 1 and the cladding material 2, the core material containing 0.5 to 1.2% of Si, 0.2 to 1.0% of Cu, 1.0 to 1.8% of Mn, and 0.05 to 0.3% of Ti, with the balance being Al and unavoidable impurities, the cladding material 1 containing 3 to 6% of Si, 2 to 8% of Zn, and at least one of 0.3 to 1.8% of Mn and 0.05 to 0.3% of Ti, with the balance being Al and unavoidable impurities, and the cladding material 2 containing 6 to 13% of Si, with the balance being Al and unavoidable impurities, the cladding material 1 serving as the outer side of the aluminum alloy clad sheet during use.
摘要:
An aluminum alloy brazing sheet having high strength comprising:a core alloy; an Al—Si-based filler alloy cladded on one side or both sides of the core alloy, wherein the core alloy is composed of an aluminum alloy containing 0.3-1.2% (mass %, the same applies the below) Si, 0.05-0.4% Fe, 0.3-1.2% Cu, 0.3-1.8% Mn, 0.05-0.6% Mg, and containing one or more elements selected from the group consisting of 0.02-0.3% Ti, 0.02-0.3% Zr, 0.02-0.3% Cr and 0.02-0.3% V, the balance of Al and unavoidable impurities; and wherein, after the aluminum alloy brazing sheet is subjected to brazing, the core alloy features a metallic structure in which a density of intermetallic compounds having a grain diameter of at least 0.1 μm is at most ten grains per μm2.