摘要:
A first layer has n type conductivity. A second layer is epitaxially formed on the first layer and having p type conductivity. A third layer is on the second layer and having n type conductivity. ND is defined to represent a concentration of a donor type impurity. NA is defined to represent a concentration of an acceptor type impurity. D1 is defined to represent a location in the first layer away from an interface between the first layer and the second layer in a depth direction. D1 in which 1≦ND/NA≦50 is satisfied is within 1 μm therefrom. A gate trench is provided to extend through the third layer and the second layer to reach the first layer. A gate insulating film covers a side wall of the gate trench. A gate electrode is embedded in the gate trench with the gate insulating film interposed therebetween.
摘要:
A collector layer having p type is formed on a silicon carbide substrate having n type. A drift layer having n type is formed on a top surface side of the collector layer. A body region provided on the drift layer and having p type, and an emitter region provided on the body region to be separated from the drift layer by the body region and having n type are formed. A bottom surface side of the collector layer is exposed by removing the silicon carbide substrate.
摘要:
A first layer has n type conductivity. A second layer is epitaxially formed on the first layer and having p type conductivity. A third layer is on the second layer and having n type conductivity. ND is defined to represent a concentration of a donor type impurity. NA is defined to represent a concentration of an acceptor type impurity. D1 is defined to represent a location in the first layer away from an interface between the first layer and the second layer in a depth direction. D1 in which 1≦ND/NA≦50 is satisfied is within 1 μm therefrom. A gate trench is provided to extend through the third layer and the second layer to reach the first layer. A gate insulating film covers a side wall of the gate trench. A gate electrode is embedded in the gate trench with the gate insulating film interposed therebetween.
摘要:
A mask layer is formed on a silicon carbide layer by a deposition method. The mask layer is patterned. A gate trench having a side wall is formed by removing a portion of the silicon carbide layer by etching using the patterned mask layer as a mask. A gate insulating film is formed on the side wall of the gate trench. A gate electrode is formed on the gate insulating film. The silicon carbide layer has one of hexagonal and cubic crystal types, and the side wall of the gate trench substantially includes one of a{0-33-8} plane and a {01-1-4} plane in a case where the silicon carbide layer is of hexagonal crystal type, and substantially includes a {100} plane in a case where the silicon carbide layer is of cubic crystal type.
摘要:
A substrate has a surface made of a semiconductor having a hexagonal single-crystal structure of polytype 4H. The surface of the substrate is constructed by alternately providing a first plane having a plane orientation of (0-33-8), and a second plane connected to the first plane and having a plane orientation different from the plane orientation of the first plane. A gate insulating film is provided on the surface of the substrate. A gate electrode is provided on the gate insulating film.
摘要:
There are provided a high-quality semiconductor device having stable characteristics and a method for manufacturing such a semiconductor device. The semiconductor device includes: a substrate having a main surface; and a silicon carbide layer formed on the main surface of the substrate and including a side surface inclined relative to the main surface. The side surface substantially includes a {03-3-8} plane. The side surface includes a channel region.
摘要:
A method of manufacturing an SiC semiconductor device includes the steps of forming a first oxide film on a first surface of an SiC semiconductor, removing the first oxide film, and forming a second oxide film constituting the SiC semiconductor device on a second surface exposed as a result of removal of the first oxide film in the SiC semiconductor. Between the step of removing the first oxide film and the step of forming a second oxide film, the SiC semiconductor is arranged in an atmosphere cut off from an ambient atmosphere.
摘要:
A method of cleaning a SiC semiconductor includes the steps of forming an oxide film at the surface of a SiC semiconductor, and removing the oxide film. At the step of forming an oxide film, an oxide film is formed using ozone water having a concentration greater than or equal to 30 ppm. The forming step preferably includes the step of heating at least one of the surface of the SiC semiconductor and the ozone water. Thus, there can be obtained a method of cleaning a SiC semiconductor that can exhibit cleaning effect on the SiC semiconductor.
摘要:
A drift layer has a thickness direction throughout which a current flows and has an impurity concentration N1d for a first conductivity type. A body region is provided on a portion of the drift layer, has a channel to be switched by a gate electrode, has an impurity concentration N1b for the first conductivity type, and has an impurity concentration N2b for the second conductivity type greater than the impurity concentration N1b. A JFET region is disposed adjacent to the body region on the drift layer, has an impurity concentration N1j for the first conductivity type, and has an impurity concentration N2j for the second conductivity type smaller than the impurity concentration N1j. N1j−N2j>N1d and N2j
摘要:
A semiconductor device includes: a substrate made of silicon carbide and having a main surface having an off angle of not less than −3° and not more than +5° relative to a (0-33-8) plane in a direction; a p type layer made of silicon carbide and formed on the main surface of the substrate by means of epitaxial growth; and an oxide film formed in contact with a surface of the p type layer. A maximum value of nitrogen atom concentration is 1×1021 cm−3 or greater in a region within 10 nm from an interface between the p type layer and the oxide film.