摘要:
The method according to the present invention includes the steps of: sequentially applying a plurality of different voltages to an MR element and sequentially detecting output signals from the MR element; and eliminating the MR element as a defective product when an evaluation value, based on a difference of SN ratios of the output signals from the MR element respectively obtained for each applied voltage, is less than a threshold value, and selecting the MR element as a non-defective product when the evaluation value is greater than or equal to the threshold value.
摘要:
A method for producing a thin film magnetic head including a magnetoresistive effect element (MR element) that has a magnetic sensor multi-layered film with a polygonal shape such that a vertex angle faces an air bearing surface (ABS) and a tip of the vertex angle is cut when the magnetic sensor multi-layered film is viewed from an X-Y plane that is parallel to a plane of a lower shield electrode layer includes a step for stopping a lapping process by using a measurement point in which a resistance value is steeply increased while the lapping face is gradually approaching the vertex angle of polygonal shape by lapping from the ABS side. Therefore, an excellent effect in which an ultra narrow track width that exceeds limits of photolithography technology can be securely and constantly formed is obtained.
摘要:
The thin-film magnetic head of the invention comprises a magneto-resistive effect device including a multilayer film and a bias mechanism portion including a bias magnetic field-applying layer formed on each widthwise end of the multilayer film. When the magneto-resistive effective device including a multilayer film and the bias mechanism portion are viewed in plane on their own, the uppermost extremity of the rear end of the magneto-resistive effect device and the uppermost extremity of the rear end of the bias mechanism portion lie at substantially the same depth-wise position, and the rear slant of the bias mechanism portion is gentler in gradient than the rear slat of the magneto-resistive effect device. It is thus possible just only to facilitate the fabrication of the device but also to achieve several advantages of being a lower rate of occurrence of noise, higher reliability and higher yields.
摘要:
A method of manufacturing a magnetic head, including a magneto resistance effect (MR) element that reads a magnetic recording medium, is disclosed. A multilayer film is formed on a shield layer. Unnecessary portions of the multilayer film are removed from both sides of the MR element in a first direction orthogonal to a lamination direction of the multilayer film and parallel to the MR element surface facing the magnetic recording medium. An insulating layer is formed on a surface exposed by removal of the unnecessary portions. An integrated soft magnetic layer covering both sides of the MR element in the first direction and an upper side of the MR element is formed, thereby configuring a second shield layer. An anisotropy application layer is formed on the second shield layer, thereby providing exchange anisotropy to the soft magnetic layer, and magnetizing the soft magnetic layer in a predetermined direction.
摘要:
A magnetic head that reads information of a magnetic recording medium is provided. The magnetic head according to one embodiment includes: an MR element, formed with multilayer films, of which an electrical resistance changes according to an external magnetic field; a first shield layer that is disposed on a lower side in an lamination direction of the MR element; a second shield layer that is disposed on an upper side in the lamination direction of the MR element, and that applies voltage to the MR element together with the first shield layer; and side shield layers that are disposed on both sides of the MR element in a truck width direction. The side shield layers include soft magnetic layers and hard magnetic layers magnetized in a predetermined direction.
摘要:
A thin film magnetic head includes: a magneto resistance effect film of which electrical resistance varies corresponding to an external magnetic field; a pair of shields provided on both sides in a manner of sandwiching the MR film in a direction that is orthogonal to a film surface of the MR film; an anisotropy providing layer that provides exchange anisotropy to a first shield of the pair of shields in order to magnetize the first shield in a desired direction, and that is disposed on the opposite side from the MR film with respect to the first shield; and side shields that are disposed on both sides of the MR film in a track width direction and that include soft magnetic layers magnetically connected with the first shield.
摘要:
The estimation method of the invention for estimating the deteriorations of a magneto-resistive effect device by heat shocks involves applying heat shocks by laser irradiation to a structure including a thin-film magnetic head comprising a magneto-resistive effect device to propagate them to the magneto-resistive effect device, thereby causing the deteriorations of the magneto-resistive effect device. Thus, (1) the deterioration mode phenomenon of “local overheating plus vibration” can be imitated in a simple yet very approximate state so that a device likely to undergo characteristics deteriorations due to the thermal asperity problem can be detected early at an initial fabrication process stage, and (2) what specifications a head device structure less likely to offer the thermal asperity problem is in can be judged at a product development stage.
摘要:
The estimation method of the invention for estimating the deteriorations of a magneto-resistive effect device by heat shocks involves applying heat shocks by laser irradiation to a structure including a thin-film magnetic head comprising a magneto-resistive effect device to propagate them to the magneto-resistive effect device, thereby causing the deteriorations of the magneto-resistive effect device. Thus, (1) the deterioration mode phenomenon of “local overheating plus vibration” can be imitated in a simple yet very approximate state so that a device likely to undergo characteristics deteriorations due to the thermal asperity problem can be detected early at an initial fabrication process stage, and (2) what specifications a head device structure less likely to offer the thermal asperity problem is in can be judged at a product development stage.
摘要:
A thin film magnetic head includes; an MR film that includes a pinned layer of which a magnetization direction is pinned, a free layer of which a magnetization direction varies, and a spacer that is disposed therebetween; a pair of shields that are disposed on both sides sandwiching the MR film in a direction orthogonal to a film surface of the MR film; and an anisotropy providing layer that provides anisotropy to a first shield so that the first shield is magnetized in a desired direction, and that is disposed on an opposite side from the MR film with respect to the first shield. The MR film includes a magnetic coupling layer that is disposed between the first shield and the free layer and that magnetically couples the first shield with the free layer.
摘要:
A method of manufacturing a magnetic head that includes a magneto resistance effect (MR) element of which an electrical resistance changes according to an external magnetic field and shield layers surrounding the MR element, and that reads information of a magnetic recording medium is provided. The manufacturing method includes: a first step of forming a multilayer film including a plurality of layers configuring the MR element on a first shield layer; a second step of removing unnecessary portions of the multilayer film positioned on both sides so as to configure the MR element; a third step of forming an insulating layer on a surface exposed by removing the unnecessary portions; a fourth step of forming a soft magnetic layer covering the MR element in an integrated manner at once on both sides of the MR element and on the MR element so as to configure a second shield layer including the soft magnetic layer; and a fifth step of forming an anisotropy application layer on the second shield layer, the anisotropy application layer providing exchange anisotropy to the soft magnetic layer so as to magnetize the soft magnetic layer in a predetermined direction.