摘要:
In at least certain embodiments, the present invention provides a diffusion media and fuel cells and systems employing the diffusion media. In at least one embodiment, the diffusion media comprises a porous matrix having an outer surface and a hydrophilic polymeric coating on at least a portion of the porous matrix with the hydrophilic coating comprising the cured product of a formulation comprising a hydrophilic monomer.
摘要:
In at least certain embodiments, the present invention provides a diffusion media and fuel cells and systems employing the diffusion media. In at least one embodiment, the diffusion media comprises a porous matrix having an outer surface and a hydrophilic polymeric coating on at least a portion of the porous matrix with the hydrophilic coating comprising the cured product of a formulation comprising a hydrophilic monomer.
摘要:
In at least certain embodiments, the present invention provides a diffusion media and fuel cells and systems employing the diffusion media. In at least one embodiment, the diffusion media comprises a porous matrix having an outer surface and a hydrophilic polymeric coating on at least a portion of the porous matrix with the hydrophilic coating comprising the cured product of a formulation comprising a hydrophilic monomer.
摘要:
A method of transferring nanostructured thin catalytic layers to a gas diffusion layer and thus making a catalyst coated diffusion media is described. The method includes treating the gas diffusion layer with a temporary adhesive to temporarily increase the adhesion strength within the microporous layer and to carbon fiber paper substrate, transferring the nanostructured thin catalytic layer to the microporous side of a gas diffusion media layer. The nanostructured thin catalytic layer can then be further processed, including adding additional components or layers to the nanostructured thin catalytic layer on the gas diffusion media layer. Preparation of catalyst coated diffusion media and a catalyst coated diffusion media based membrane electrode assembly (MEA) are also described.
摘要:
A diffusion medium for use in a PEM fuel cell comprising a thin perforated layer having variable size and frequency of perforation patterns incorporated into a microporous layer on a first side of a porous substrate layer, wherein the diffusion medium is adapted to improve water management and performance of the fuel cell.
摘要:
Specially prepared gas diffusion media improve the performance of PEM fuel cells. The media are made by first dipping an electrically conductive porous material such as carbon fiber paper into a suspension of hydrophobic polymer and drying the paper to create a desired deposition pattern of hydrophobic polymer on the substrate. Then a paste containing a fluorocarbon polymer and carbon particles is applied to a desired side of the substrate, and thereafter the paste and hydrophobic polymer are sintered together at high temperature on the paper. In particular, nonionic surfactants remain on the carbon fiber paper after the initial hydrophobic polymer is applied to the electrically conductive porous material. When the paste is coated on the dried paper, the paste is in contact with a hydrophilic surface.
摘要:
Favorable performance of diffusion media in fuel cells has found to be correlated to a parameter (the C/F ratio) that relates to a spatial and thickness distribution of the hydrophobic fluoropolymer on the carbon fiber substrate structure of the medium. Suitable diffusion media may be chosen from among commercially coated diffusion media by measuring the C/F ratio by means of energy dispersive spectroscopy, and choosing the diffusion media if the value of the C/F ratio is within the preferred range. Alternatively, the diffusion media may be manufactured with an improved process that consistently yields values of C/F ratio in the desired range.
摘要:
A method of transferring a nanostructured thin catalytic layer from its carrying substrate to a porous transfer substrate and further processing and restructuring the nanostructured thin catalytic layer on the porous transfer substrate is provided. The method includes transferring the nanostructured catalytic layer from its carrying substrate to a transfer substrate. The nanostructured catalytic layer then is processed and reconstructed, including removing the residual materials and adding additional components or layers to the nanostructured catalytic layer, on the transfer substrate. Methods of fabricating catalyst coated membranes with the reconstructed electrode including the nanostructured thin catalytic layer, reconstructed electrode decals, and catalyst coated proton exchange membranes are also described.
摘要:
A gas diffusion media for a fuel cell, such as a proton exchange membrane fuel cell, is provided. The gas diffusion media includes carbonizable acrylic pulp fibers instead of conventional phenolic resin as a binder material. The acrylic fibers are mixed with the carbon fiber dispersion during the papermaking step, thus eliminating the phenolic resin impregnation step typically associated with conventional gas diffusion media manufacturing processes. The mat is then cured and carbonized to produce gas diffusion media.
摘要:
A diffusion medium for use in a PEM fuel cell contains hydrophobic and hydrophilic areas for improved water management. A hydrophobic polymer such as a fluororesin is deposited on the paper to define the hydrophobic areas, and an electroconductive polymer such as polyaniline or polypyrrole is deposited on the papers defining the hydrophilic areas. In various embodiments, a matrix of hydrophobic and hydrophilic areas on the carbon fiber based diffusion media is created by electropolymerization of a hydrophilic polymer onto a diffusion medium which has been previously coated with a hydrophobic polymer such as a fluorocarbon polymer. When an aqueous solution containing monomers for electropolymerization is contacted with a fluorocarbon coated diffusion medium, the hydrophilic polymer will be preferentially deposited on areas of the carbon fiber based diffusion medium that are not covered by the fluorocarbons.