摘要:
In an electron-emitting device including, between electrodes, an electroconductive film having an electron emitting region, the electroconductive film has a film formed in the electron emitting region and made primarily of a material having a higher melting point than that of a material of the electrdconductive film. Alternatively, the electroconductive film has a film formed in the electron emitting region and made primarily of a material having a higher temperature at which the material develops a vapor pressure of 1.3×10−3 Pa, than that of a material of the electroconductive film. A manufacturing method of an electron-emitting device includes a step of forming a film made primarily of a metal in the electron emitting region of the electroconductive film. The electron-emitting device has stable characteristics and improved efficiency of electron emission. An image-forming apparatus comprising the electron-emitting devices has high luminance and excellent stability in operation.
摘要:
In an electron-emitting device including, between electrodes, an electroconductive film having an electron emitting region, the electroconductive film has a film formed in the electron emitting region and made primarily of a material having a higher melting point than that of a material of the electroconductive film. Alternatively, the electroconductive film has a film formed in the electron emitting region and made primarily of a material having a higher temperature at which the material develops a vapor pressure of 1.3.times.10.sup.-3 Pa, than that of a material of the electroconductive film. A manufacturing method for an electron-emitting device includes a step of forming a film made primarily of a metal in the electron emitting region of the electroconductive film. The electron-emitting device has stable characteristics and improved efficiency of electron emission. An image-forming apparatus comprising the electron-emitting devices has high luminance and excellent stability in operation.
摘要:
An electron-emitting device includes a pair of electrodes and an electroconductive film arranged between the electrodes and including an electron-emitting region carrying a graphite film. The graphite film shows, in a Raman spectroscopic analysis using a laser light source with a wavelength of 514.5 nm and a spot diameter of 1 &mgr;m, peaks of scattered light, of which 1) a peak (P2) located in the vicinity of 1,580 cm−1 is greater than a peak (P1) located in the vicinity of 1,335 cm−1 or 2) the half-width of a peak (P1) located in the vicinity of 1,335 cm−1 is not greater than 150 cm−1.
摘要:
An electron-emitting device comprises a pair of electrodes and an electroconductive film arranged between the electrodes and including an electron-emitting region carrying a graphite film. The graphite film shows, in a Raman spectroscopic analysis using a laser light source with a wavelength of 514.5 nm and a spot diameter of 1 μm, peaks of scattered light, of which 1) a peak (P2) located in the vicinity of 1,580 cm−1 is greater than a peak (P1) located in the vicinity of 1,335 cm−1 or 2) the half-width of a peak (P1) located in the vicinity of 1,335 cm−1 is not greater than 150 cm−1.
摘要:
In a manufacture method of an electron-emitting device in which an electro-conductive film having an electron-emitting region is provided between electrodes disposed on a substrate, a step of forming the electron-emitting region comprises a step of forming a structural latent image in the electro-conductive film, and a step of developing the structural latent image. An electron source comprising a plurality of electron-emitting devices arrayed on a substrate, and an image-forming apparatus in combination of the electron source and an image-forming member are manufactured by using the electron-emitting devices manufactured by the above method. The position and shape of an electron-emitting region of each electron-emitting device can be controlled so as to achieve uniform device characteristics, resulting less variations in the amount of emitted electrons between the electron-emitting devices and in the brightness of pictures. Also, the need of flowing a great current for formation of the electron-emitting region is eliminated and hence the current capacity of wiring can be reduced.
摘要:
An electron-emitting device comprises a pair of electrodes and an electroconductive film arranged between the electrodes and including an electron-emitting region carrying a graphite film. The graphite film shows, in a Raman spectroscopic analysis using a laser light source with a wavelength of 514.5 nm and a spot diameter of 1 μm, peaks of scattered light, of which 1) a peak (P2) located in the vicinity of 1,580 cm−1 is greater than a peak (P1) located in the vicinity of 1,335 cm−1 or 2) the half-width of a peak (P1) located in the vicinity of 1,335 cm−1 is not greater than 150 cm−1.
摘要:
An electron-emitting device comprises a pair of electrodes and an electroconductive film arranged between the electrodes and including an electron-emitting region carrying a graphite film. The graphite film shows, in a Raman spectroscopic analysis using a laser light source with a wavelength of 514.5 nm and a spot diameter of 1 μm, peaks of scattered light, of which 1) a peak (P2) located in the vicinity of 1,580 cm−1 is greater than a peak (P1) located in the vicinity of 1,335 cm−1 or 2) the half-width of a peak (P1) located in the vicinity of 1,335 cm−1 is not greater than 150 cm−1.
摘要:
An electron-emitting device comprises a pair of oppositely disposed electrodes and an electroconductive film inclusive of an electron-emitting region arranged between the electrodes. The electric resistance of the electroconductive film is reduced after forming the electron-emitting region in the course of manufacturing the electron-emitting device.
摘要:
An electron-emitting device comprises an electroconductive film including an electron-emitting region disposed between a pair of electrodes arranged on a substrate. The electron-emitting region is formed close to the step portion formed by one of the electrodes and the substrate.
摘要:
An electron-emitting device comprises a pair of electrodes and an electroconductive film arranged between the electrodes and including an electron-emitting region carrying a graphite film. The graphite film shows, in a Raman spectroscopic analysis using a laser light source with a wavelength of 514.5 nm and a spot diameter of 1 μm, peaks of scattered light, of which 1) a peak (P2) located in the vicinity of 1,580 cm−1 is greater than a peak (P1) located in the vicinity of 1,335 cm−1 or 2) the half-width of a peak (P1) located in the vicinity of 1,335 cm−1 is not greater than 150 cm−1.