摘要:
Herein described are suture-anchoring implanted medical devices formed from a bioresorbable metal alloy that may be used to secure soft tissue to bone. The metallic bioresorbable tissue anchoring devices of the present invention are optimally configured such that all portions of the device are resorbed over a short predetermined period of time while maintaining their tissue anchoring capability and preventing the generation of loose foreign bodies therefrom.
摘要:
In the context of endoscopic electrosurgery, there is a need for a sufficiently robust, rigid, and preferably aspirating electrosurgical device that may be repeatedly flexed in the field to allow access to a wide array of remote tissues using a single device and, more preferably, during a single minimally invasive procedure. The present invention addresses this significant need by providing the distal portion of the elongate tubular member of an electrosurgical device with a bend region having a non-uniform flexural strength along its length, such that one may bend the tubular member at said bend region not only to an initial small radius bend, but subsequently rebend the distal portion to other angles as needed, with all bends occurring in the same distal region. A number of different mechanisms for reducing the flexural strength in the bend region are disclosed herein, including, for example, notching the tube in the bend region, annealing the tube in the bend region, reducing the wall thickness in the bend region, utilizing a material having lower flexular and/or yield strength to form the bend region, utilizing a small diameter elongate conductive element having negligible rigidity, such as a wire, and combinations thereof.
摘要:
Arising from the discovery that a non-immunogenic poly-synthetic bioadhesive based on polyphenolic proteins produced by sandcastle worms (Phragmatopoma californica) may be used to anneal tears of the meniscus and annulus fibroses and repair spinal disc herniations, herein disclosed are suture-less meniscal and disc repair devices, systems and methods that may be implemented least invasively, in fluid filled or dry/semi-dry environments using simple instrumentation and without the need for suturing or the placement of anchors. The present invention is less technically demanding for the practioner and thus expected enhance outcomes and represent a distinct advancement over prior art techniques presently available.
摘要:
Described herein is a simplified placement system and method for a tissue graft anchor by which a surgeon may introduce one or more sutures into a hole in a boney tissue, apply a precise amount of tension to the sutures to advance a soft tissue graft to a desired location, and then advance the anchor into the bone, preferably while maintaining the requisite pre-determined suture tension and without introducing spin to the suture. Particularly preferred embodiments allow for the one-handed operation, namely embodiments in which relative axial movement between the inner tensioning device and outer driver device is optionally physically constrained, for example by means of cooperating and/or compressive elements disposed in the respective hub and handle portions, are described herein. Other preferred embodiments of the present invention relate to multi-anchor constructs that may employ threaded implants exclusively, push-in implants exclusively, or a combination of threaded and push-in implants.
摘要:
Described herein is a simplified placement system and method for a tissue graft anchor by which a surgeon may introduce one or more sutures into a hole in a boney tissue, apply a precise amount of tension to the sutures to advance a soft tissue graft to a desired location, and then advance the anchor into the bone, preferably while maintaining the requisite pre-determined suture tension and without introducing spin to the suture. Particularly preferred embodiments allow for the placement of small diameter knotless anchors. For example, the implant placement system may include a cannulated tensioning device having disposed therein an elongate member of a suitably elastic metallic or polymeric material, such as nitinol, that includes at its distal end a loop of material suitable for suture retention. The implant placement system may further include high tensile strength knotless anchors provided with internal drive features that coordinate with torque-transmitting features unique to the driver devices of the present invention.
摘要:
Described herein is a simplified placement system and method for a tissue graft anchor by which a surgeon may introduce one or more sutures into a hole in a boney tissue, apply tension to the sutures to advance a soft tissue graft to a desired location, and then advance the anchor into the bone while maintaining suture tension and without introducing spin to the suture.
摘要:
Described herein is a simplified placement system and method for a tissue graft anchor by which a surgeon may introduce one or more sutures into a hole in a boney tissue, apply a precise amount of tension to the sutures to advance a soft tissue graft to a desired location, and then advance the anchor into the bone, preferably while maintaining the requisite pre-determined suture tension and without introducing spin to the suture. Particularly preferred embodiments allow for the one-handed operation. To that end, embodiments in which relative axial movement between the inner tensioning device and outer driver device is optionally physically constrained, for example by means of cooperating and/or compressive elements disposed in the respective hub and handle portions, are described herein.
摘要:
Described herein is a simplified placement system and method for a tissue graft anchor by which a surgeon may introduce one or more sutures into a hole in a boney tissue, apply a precise amount of tension to the sutures to advance a soft tissue graft to a desired location, and then advance the anchor into the bone, preferably while maintaining the requisite pre-determined suture tension and without introducing spin to the suture. Particularly preferred embodiments allow for the one-handed operation. To that end, embodiments in which relative axial movement between the inner tensioning device and outer driver device is optionally physically constrained, for example by means of cooperating and/or compressive elements disposed in the respective hub and handle portions, are described herein.
摘要:
In the context of bone surgery and in particular arthroscopic surgery, there is frequently a need for the application of “percussive force” to the distal end component(s) of a surgical device, i.e., repetitive percutient or striking force analogous to that of a hammer driving a nail. Disclosed herein are mechanisms and methods for automating and/or controlling the application of such a percussive force so as to avoid the present need in the art for a “third hand”. The present invention addresses the significant and long felt need by providing a powered percussive driver device that may be controlled directly by the primary surgeon.
摘要:
Described herein is a simplified placement system and method for a tissue graft or “suture anchor”, threaded, knotless or otherwise, by which a surgeon may introduce one or more sutures into a hole in a boney tissue, apply a precise amount of tension to the sutures to advance a soft tissue graft to a desired location, and then advance the anchor into the bone, preferably while maintaining the requisite pre-determined suture tension and without introducing spin to the suture. The simplified placement system and method of the present invention allows the surgeon to establish the graft position and, while maintaining that position, secure the anchor without changing the suture tension or causing a shift in the graft position and furthermore, when the anchor is threaded, without spinning of the suture. In certain preferred embodiments, the distal end of the device includes a resiliently deformable polymeric distal element, optionally including a “split” suture-capturing loop, that allows for the retention of multiple sutures. In other embodiments, the distal end may further include a depth or penetration-limiting element formed of a suitable metallic or polymeric material that serves to prevent the distal end of the device from excessively penetrating, damaging or tearing a tissue graft of interest.