摘要:
In an infrared ray sensor for a bolometer, a bridge structure body, a resistive element film for the bolometer, and a protection film is formed via a space on a substrate, and is formed into a solution form by dissolving metal organic compound into solvent. The solution is applied and dried. A laser ray is irradiated for the solution with wavelength of 400 nm or less. A bond between carbon and oxygen is decomposed and cut to thereby form an oxide thin-film.
摘要:
An oxide for use in a bolometer with an oxide thin-film formed is manufactured on an insulating substrate. Metal organic compound is dissolved in solvent to form solution during manufacturing the oxide thin-film. The solution is applied on the insulating substrate, and the applied solution is dried. A bond between carbon and oxygen is cut and decomposed by irradiating a laser ray with wavelength of 400 nm or less. A generated oxide is crystallized.
摘要:
Electric power is supplied from a fuel cell to a portable personal computer (210) having a heat-producing section (212) which generates heat during operation. The fuel cell includes electrolyte, a fuel electrode and an oxidant electrode arranged to sandwich the electrolyte, and a fuel supply section capable of supplying fuel which has absorbed heat of the heat-producing section (212) to the fuel electrode. The fuel supply section removes the heat from the heat-producing section (212) by supplying fuel to the fuel electrode when the fuel is heated by heat exchange. Thus, it is possible to improve the battery efficiency of the fuel cell and suppress increase of the temperature of the heat-producing section.
摘要:
An adhesion layer containing a second solid polymer electrolyte is disposed between a solid polymer electrolyte membrane and a fuel electrode and/or an oxidant electrode containing a first solid polymer electrolyte and a catalyst substance. The solid polymer electrolyte membrane and the adhesion layer are made of the same solid polymer electrolyte. In this manner, the adhesion at the interface between the electrode surface and the solid polymer electrolyte membrane is enhanced to implement the elevation of the cell characteristics and the elevation of the reliability of the cell.
摘要:
A liquid fuel supply type fuel cell is provided in which water present in the oxidizer electrode is promptly removed and evaporated, thereby achieving high output. A fuel cell electrode and methods for manufacturing the same are also provided. In a fuel cell, a base material is provided with a hydrophobic layer on the surface in contact with a catalyst layer for discharging water promptly, and a hydrophilic layer from the hydrophobic layer towards the outside of the cell for evaporating water which has passed through the hydrophobic layer from the surface.
摘要:
An adhesive layer 3 is disposed between a carbon particle 2 and a catalyst substance 1 of a catalyst-supporting particle for a fuel cell containing the carbon particle 2 and the catalyst substance 1. Thereby, the catalyst-supporting particle for fuel cell can be obtained in which a contact resistance between the catalyst substance and the carbon particle supporting the same is lower, and the aggregation of the catalyst substance is suppressed. A catalyst electrode for a fuel cell and the fuel cell using the above particle have a higher output power and an excellent durability.
摘要:
An adhesion layer containing a second solid polymer electrolyte is disposed between a solid polymer electrolyte membrane and a fuel electrode and/or an oxidant electrode containing a first solid polymer electrolyte and a catalyst substance. The solid polymer electrolyte membrane and the adhesion layer are made of the same solid polymer electrolyte. In this manner, the adhesion at the interface between the electrode surface and the solid polymer electrolyte membrane is enhanced to implement the elevation of the cell characteristics and the elevation of the reliability of the cell.
摘要:
An adhesive layer 3 is disposed between a carbon particle 2 and a catalyst substance 1 of a catalyst-supporting particle for a fuel cell containing the carbon particle 2 and the catalyst substance 1. Thereby, the catalyst-supporting particle for fuel cell can be obtained in which a contact resistance between the catalyst substance and the carbon particle supporting the same is lower, and the aggregation of the catalyst substance is suppressed. A catalyst electrode for a fuel cell and the fuel cell using the above particle have a higher output power and an excellent durability.
摘要:
The present invention provides a catalyst electrode and a manufacturing method of the same. When the catalyst electrode is used for a fuel cell, it is capable of suppressing an air, which is a by-product generated at a fuel electrode on a surface of the electrode, and quickly removing the adsorbed bubble-like air. Accordingly, the catalyst electrode is capable of increasing an effective catalyst surface of the fuel electrode and enhancing an output power of the fuel cell. Moreover, the present invention provides fuel cell and a manufacturing method of the same. The fuel cell is capable of suppressing an air, which is a by-product generated at the fuel electrode on the surface of the electrode and quickly removing the adsorbed bubble-like air. Accordingly, the fuel cell is capable of increasing an effective catalyst surface of the fuel electrode and enhancing an output power thereof. In a catalyst electrode for a fuel cell provided with a substrate and a catalyst layer which is formed on the substrate and which contains a carbon particle carrying a catalyst and a solid polymer electrolyte, the substrate or the catalyst layer contains one or more kinds of anti-foaming agent.
摘要:
The present invention provides a fuel cell which is small-sized and light-weight for mounting in a mobile device, and has a high output-density. A current-collector 421 of a fuel electrode (or a current-collector 423 of an oxidizer electrode) is bonded to a substrate 104 (or a substrate 110) of a fuel electrode 102 (or an oxidizer electrode 108) in a fuel cell 100, rendering the current-collector 421 (or the current-collector 423) to be thin and light-weight, and making it no longer necessary to use an end plate and a fastener. Fuel or oxidizer is supplied directly to a surface of the current-collector 421 or 423.