Abstract:
A slider is displaceable in an axial direction on guide sections of a cylinder tube. Bearings are installed with the slider, so that the bearings are opposed to the guide sections. Bearings are also installed on first and second bearing support members, which are provided respectively at retaining sections of the slider. When the slider is displaced in the axial direction along the cylinder tube, only one end surface of one of the flange sections of the bearing is pressed, depending on the displacement direction of the slider, in order to effect displacement in an integrated manner.
Abstract:
A slider is displaceable in an axial direction on guide sections of a cylinder tube through a guide mechanism. A first elastic member is interposed between a first bearing support member of the guide mechanism and one retaining section of the slider. A bearing installed in the first bearing support member, is pressed continuously toward the guide section. A second bearing support member is installed via a second elastic member between the guide section and another retaining section of the slider. A bearing provided on the second bearing support member is pressed toward the guide section by means of a resilient force of the second elastic member.
Abstract:
A slider is displaceable in an axial direction on guide sections of a cylinder tube through a guide mechanism. A first elastic member is interposed between a first bearing support member of the guide mechanism and one retaining section of the slider. A bearing installed in the first bearing support member, is pressed continuously toward the guide section. A second bearing support member is installed via a second elastic member between the guide section and another retaining section of the slider. A bearing provided on the second bearing support member is pressed toward the guide section by means of a resilient force of the second elastic member.
Abstract:
A coupler is provided inside an engaging hole of a piston yoke, which is connected to pistons. A slider is installed on an upper portion of the coupler through a coupler-insertion hole. An engaging member, provided at a lower portion of the coupler, is inserted into the engaging hole so as to be displaceable by a slight amount in the widthwise direction of a cylinder tube. The coupler is inserted into the coupler-insertion hole of the slider, so that the coupler-insertion hole is slidable with respect to curved surface sections of the coupler.
Abstract:
A coupler is provided inside an engaging hole of a piston yoke, which is connected to pistons. A slider is installed on an upper portion of the coupler through a coupler-insertion hole. An engaging member, provided at a lower portion of the coupler, is inserted into the engaging hole so as to be displaceable by a slight amount in the widthwise direction of a cylinder tube. The coupler is inserted into the coupler-insertion hole of the slider, so that the coupler-insertion hole is slidable with respect to curved surface sections of the coupler.
Abstract:
A slider is displaceable in an axial direction on guide sections of a cylinder tube. Bearings are installed with the slider, so that the bearings are opposed to the guide sections. Bearings are also installed on first and second bearing support members, which are provided respectively at retaining sections of the slider. When the slider is displaced in the axial direction along the cylinder tube, only one end surface of one of the flange sections of the bearing is pressed, depending on the displacement direction of the slider, in order to effect displacement in an integrated manner.
Abstract:
An acoustic image localization apparatus according to the present invention that outputs sound from a plurality of speakers so as to localize an acoustic image at a predetermined position on a space as viewed from a listener, the acoustic image localization apparatus comprising: amplitude characteristic adjusting means for adjusting an amplitude frequency characteristic of an inputted acoustic signal such that the acoustic image is localized at a position rotated by a first angle about a position of a listener toward an upper direction from a facing position of the listener; and a plurality of level adjusting means, provided so as to respectively correspond to the plurality of speakers, for adjusting a level of the acoustic signal outputted from the amplitude characteristic adjusting means and for outputting, to a corresponding speaker, the acoustic signal whose level has been adjusted, wherein each of the level adjusting means adjusts the level of the acoustic signal, which is outputted from the amplitude characteristic adjusting means, to a level of the corresponding speaker such that the acoustic image is localized at the predetermined position rotated by a second angle about the position of the listener toward one of directions orthogonal to the rotated directions from the position rotated by the first angle.
Abstract:
The present invention provides a filter structure manufacturable through fewer steps and at lower cost by using inexpensive materials and general techniques for processing while maintaining accuracy of the production of clearances that determines filtering performance and a method of manufacturing the filter structure. The filter structure according to the present invention comprises a base plate, a first intermediate layer, a second intermediate layer and a cover. The first intermediate layer has a first flow channel and a second flow channel with predetermined widths and depths, and the second intermediate layer has a third flow channel with a predetermined width and depth. The third flow channel communicates with the first flow channel and also with the second flow channel, and the maximum depth of the third flow channel is smaller than the minimum depths of the first flow channel and the second flow channel. Accordingly, the production accuracy for the clearances which determines the filter performance can be highly maintained by utilizing the thickness of the second intermediate layer.
Abstract:
A sample-carrier complex (119) is introduced into a sample introducing portion (107), and the sample-carrier complex (119) is moved and deposited on a damming portion (111). The damming portion (111) is heated at a stage in which the predetermined amount of sample-carrier complex (119) is deposited on the damming portion (111). A temperature is increased to a predetermined temperature to break down the sample-carrier complex (119) into a sample (121) and a carrier (123). A voltage is applied between the sample introducing portion (107) and a sample recovery portion (109) to cause the sample (121) to pass through a gap between columnar bodies (115) and move into a second channel (106) to perform predetermined separation and analysis or recovery operation.