Abstract:
An automated fiber-placement method comprises delivering a first quantity of pulsed energy to first discrete portions of at least one fiber-reinforced tape strip, and delivering a second quantity of pulsed energy to second discrete portions of at least the one fiber-reinforced tape strip, alternating with the first discrete portions. The first quantity of pulsed energy heats the first discrete portions to a first temperature. The second quantity of pulsed energy heats the second discrete portions to a second temperature. The automated fiber-placement method further comprises laying down at least the one fiber-reinforced tape strip against a substrate along a virtual curvilinear path, such that (i) at least the one fiber-reinforced tape strip is centered on the virtual curvilinear path, and (ii) the first discrete portions are transformed into discrete tape-regions, geometrically different from the first discrete portions.
Abstract:
An apparatus is provided for peeling a liner away from a substrate. The apparatus comprises a first member rotatable about an axis. The apparatus also comprises a second member disposed on the first member and for generating a suction force to be applied to the liner to peel a portion of the liner away from the substrate when the suction force of the second member is applied to the liner and the first member is rotating about its axis. The apparatus further comprises a third member synchronized to rotation of the first member about its axis such that the third member clamps the peeled portion of the liner against the first member while the second member is applying suction force to the liner and the first member is rotating about its axis.
Abstract:
A process and system for improving surface quality of composite structures, including laying up a first set of composite plies including a first outer ply of a first composite structure. A first intermediate surface of the first outer ply is measured to form a first set of measurements. A laydown surface for a tool path of a composite placement machine is modified to form a modified tool path, wherein modifying the laydown surface comprises modifying the laydown surface such that a laydown surface of the modified tool path matches the first set of measurements. A composite ply is laid down using the composite placement machine and the modified tool path.
Abstract:
An article of manufacture comprises a strip that extends along and is centered on a virtual curvilinear path, comprising an arc, having an arc length and a radius. A ratio of the strip-width to the radius is greater than or equal to 0.003. The arc length is equal to or greater than a product of the radius and π/64. Within each of discrete strip-regions of the strip, one of the unidirectional reinforcement fibers that is closest to the first longitudinal strip-edge is more buckled than another one of the unidirectional reinforcement fibers that is closest to the second longitudinal strip-edge. Ones of the unidirectional reinforcement fibers that are buckled are parallel to a smallest one of virtual surfaces, joining the first longitudinal strip-edge and the second longitudinal strip-edge.
Abstract:
An article of manufacture (200) comprises a strip (202) that extends along and is centered on a virtual curvilinear path (128), comprising an arc (156), having an arc length (154) and a radius (134). A ratio of the strip-width (208) to the radius (134) is greater than or equal to 0.003. The arc length (154) is equal to or greater than a product of the radius (134) and π/64. Within each of discrete strip-regions (222) of the strip (202), one of the unidirectional reinforcement fibers (132) that is closest to the first longitudinal strip-edge (204) is more buckled than another one of the unidirectional reinforcement fibers (132) that is closest to the second longitudinal strip-edge (206). Ones of the unidirectional reinforcement fibers (132) that are buckled are parallel to a smallest one of virtual surfaces, joining the first longitudinal strip-edge (204) and the second longitudinal strip-edge (206).
Abstract:
Closed-loop systems and methods for controlling the temperature at the compaction point as an automated fiber placement (AFP) machine is placing material over complex surface features at varying speeds. The closed-loop system starts with multiple infrared temperature sensors directed at the layup surface in front of the compaction roller and also at the new layup surface behind the compaction roller. These sensors supply direct temperature readings to a control computer, which also receives speed data and a listing of active tows from the AFP machine and is also programmed with the number of plies in the current layup. In accordance with one embodiment, the heater control system uses a proportional-integral-derivative loop to control the temperature at the compaction point (e.g., at the interface of the compaction roller and a newly laid tow) and regulate the heater power to achieve the desired temperature.
Abstract:
A composite laminate has a pattern of holes therein. The holes are formed by laying down plies of unidirectional pre-preg material having varying fiber orientations. The tows are spaced apart and located to form holes through the laminate.
Abstract:
An illustrative example of the present disclosure provides a machine configured to form a composite structure. The machine includes a composite placement machine, measuring equipment, a tool path generator, and compaction equipment. The composite placement machine lays up composite plies. The measuring equipment measures surfaces of the composite plies to form measurements during layup of the composite plies. A computer includes a model of the composite plies for a structure. The tool path generator forms a modified tool path based upon a difference between the measurements and expected measurements for the composite plies in the model.
Abstract:
A manufacturing system includes a plurality of rails, a plurality of head manipulating mechanisms respectively coupled to the rails, and a plurality of automated fiber placement (AFP) heads respectively coupled to the head manipulating mechanisms. The rails are arranged around a barrel-shaped layup tool, and each rail is parallel to a tool axis. Each head manipulating mechanism moves along a rail. The head manipulating mechanisms position the AFP heads in circumferential relation to each other about a tool surface of the layup tool. A total quantity of AFP heads comprises the maximum number of AFP heads that can be circumferentially arranged in longitudinal alignment with each other on the layup tool without interfering with each other while applying layup material over the tool when the layup tool is stationary and during rotation about the tool axis, to thereby fabricate a green state layup having a barrel shape.
Abstract:
There is provided a method that includes directing one or more infrared cameras at a compaction roller of a composite laying head of a composite layup machine. The one or more infrared cameras are mounted aft of the compaction roller. The method includes applying heat to a substrate by a heater. The heater is mounted forward of the compaction roller. The method further includes using the one or more infrared cameras, to obtain one or more infrared images of the compaction roller, during laying down of one or more composite tows of a composite layup onto the substrate by the compaction roller. The method further includes identifying, based on the one or more infrared images, one or more temperature profiles of the compaction roller, and analyzing identified temperature profiles, to determine one or more of, a layup quality of the composite layup, and a heat history of the composite layup.