Abstract:
Embodiments of the disclosed subject matter provide an organic vapor jet printing (OVJP) system having a printhead that include a fluidic shutter comprising a plurality of microchannels that are in fluidic communication with one another, and a micronozzle array connected to the fluidic shutter. The plurality of microchannels include a first microchannel to receive the carrier-organic mixture, a second microchannel to receive a blocking gas, a third microchannel connected to the micronozzle array, and a fourth microchannel connected to an exhaust line. The carrier-organic mixture may be deposited on a substrate when the apparatus operates in a first operating mode, and the blocking gas may direct evaporated organic material of the carrier-organic mix to the exhaust line when the apparatus operates in a second operating mode.
Abstract:
An organic photovoltaic device comprises a substrate, a reflector positioned over the substrate, a first electrode positioned over at least a first portion of the reflector, a polaritonic antenna layer positioned over a second portion of the reflector different from the first portion, electrically connected to the first electrode, and at least one unit reaction cell positioned over at least part of the first electrode, the at least one unit reaction cell comprising a heterojunction layer comprising a donor material and an acceptor material, positioned over the first electrode, and a second electrode positioned over the heterojunction, wherein the polaritonic antenna and the reflector are configured to convert incoming photonic energy to polaritons. A method of fabricating an organic photovoltaic device is also disclosed.
Abstract:
Devices, systems, and techniques are provided for improved OVJP deposition using a shutter disposed within the OVJP print head, between the print head inlet and the nozzle outlets. An OVJP print head as disclosed includes an inlet for organic material entrained in a carrier gas, a micronozzle array outlet, and a shutter disposed in the gas flow path between the inlet and the micronozzle array outlet. The shutter allows for rapid cutoff of carrier gas flow through the print head with extremely low latency.
Abstract:
Semitransparent organic photovoltaic (OPV) cells provide integrated photovoltaic needs, such as use on windows and other architectural surfaces. These cells can achieve high power conversion efficiency and supply acceptable transparency. Inverted, semitransparent OPV cells are provided that include a mixed organic heterojunction layer or a planar-mixed heterojunction layer. These cells can additionally be used to create a tandem cell, which absorbs light over a broader range of wavelengths.
Abstract:
A top-emitting organic light emitting device (OLED) that comprises: a substrate having an inward side and an outward side; an OLED body that includes a transparent bottom electrode proximate to the inward side of the substrate, an organic emitting layer, and a transparent top electrode in that order; a non-metallic, diffuse reflective layer with a roughened top surface proximate to and facing the bottom transparent electrode; and a high refractive index waveguide layer. The diffuse reflective layer is positioned between the inward side of the substrate and the OLED body, and the waveguide layer is positioned between the diffuse layer and the bottom transparent electrode.
Abstract:
A method of fabricating a photovoltaic cell having a microinverter is provided. The method may include fabricating a monolithic microinverter layer through epitaxy and operably connecting the at least one microinverter layer to at least one photovoltaic cell formed on a photovoltaic layer. A photovoltaic device is also provided. The device may have a photovoltaic layer comprising at least one photovoltaic cell and a microinverter layer comprising at least one microinverter, wherein the microinverter layer was fabricated through epitaxy, the at least one microinverter is configured to be operably connected to at least one photovoltaic cell.
Abstract:
Arrangements and techniques for providing organic emissive layers are provided, in which the emissive layer includes a first dopant having a dissociative energy level. A second dopant in the emissive layer provides a solid state sink energy level, to which doubly excited excitons and/or polarons may transition instead of to the dissociative energy level, thereby decreasing the undesirable effects of transitions to the dissociative energy level.
Abstract:
Devices including organic and inorganic LEDs are provided. Techniques for fabricating the devices include fabricating an inorganic LED on a parent substrate and transferring the LED to a host substrate via a non-destructive ELO process. Scaling techniques are also provided, in which an elastomeric substrate is deformed to achieve a desired display size.
Abstract:
Arrangements and techniques for providing organic emissive layers are provided, in which the emissive layer includes a first dopant having a dissociative energy level. A second dopant in the emissive layer provides a solid state sink energy level, to which doubly excited excitons and/or polarons may transition instead of to the dissociative energy level, thereby decreasing the undesirable effects of transitions to the dissociative energy level.
Abstract:
An organic photovoltaic device comprises an anode and a cathode, an active layer positioned between the anode and the cathode, comprising a first donor material and a first acceptor material in a first ratio, and an interface layer positioned between the anode and the cathode, comprising a second donor material and a second acceptor material in a second ratio. A method of fabricating an organic photovoltaic device and an organic photovoltaic device produced with the disclosed methods are also disclosed herein.