摘要:
Systems and methods for cavitation-guided opening of a targeted region of tissue within a primate skull are provided. In one example, a method includes delivering one or more microbubbles to proximate the targeted region, applying an ultrasound beam, using a transducer, through the skull of the primate to the targeted region to open the tissue, transcranially acquiring acoustic emissions produced from an interaction between the one or more microbubbles and the tissue, and determining a cavitation spectrum from the acquired acoustic emissions.
摘要:
Techniques for selective modulation of motor neuronal activity in a peripheral nervous system using a focused ultrasound assembly are provided. Methods include adjusting a pulse repetition frequency parameter of a focused ultrasound to selectively modulate a location on a peripheral nerve and modulating the peripheral nerve with the focused ultrasound to increase a temperature of the peripheral nerve. The modulating can comprise one or more of exciting and inhibiting the peripheral nerve with the focused ultrasound, either separately or in combination. Methods can further include locating the peripheral nerve using an imaging probe, monitoring a physiological response to the modulating, and changing the one or more ultrasound parameters in response to the physiological response. Systems for use in the modulation of peripheral nerves are also provided.
摘要:
Techniques for mapping behavior of a heart include acquiring a series of two or more images of the heart. The series of images is taken at one or more pixel locations, each pixel location corresponding to a region of the heart. Image data corresponding to the pixel locations can be obtained, and a periodicity of the image data measured for each of the pixel locations over the series of images. The periodicity corresponds to an electromechanical signal of the heart in the region corresponding to the measured one or more pixel locations.
摘要:
The disclosed subject matter provides systems and methods for targeting tissue structures and applying ultrasound thereto. A method according to the disclosed subject matter for targeting a tissue structure using corresponding tissue structure image data includes inputting the tissue structure image data into a targeting simulator, determining acoustic properties of the tissue structure from the corresponding tissue structure image data, and utilizing the determined acoustic properties to align a simulated transducer with the tissue structure such that the tissue structure is targeted. The method can further include acquiring the tissue structure image data, aligning the image data with an atlas of a body structure encompassing the tissue structure and/or selecting parameters of the simulated transducer such that a focal region of an ultrasound wave generated by the simulated transducer targets the tissue structure.
摘要:
Systems and techniques of treatment monitoring include acquiring channel data from each of a plurality of channels of a signal array over a plurality of frames, determining a reconstruction matrix based on a reconstruction operation to be performed on the channel data, applying the reconstruction matrix to the channel data to obtain reconstructed channel data, estimating displacement data representing displacement of an object over the frames from the reconstructed channel data; determining a conversion matrix based on a conversion operation to be performed on the reconstructed channel data, and applying the conversion matrix to the reconstructed channel data to obtain a displacement map.
摘要:
The present subject matter relates to techniques for opening target tissue. The disclosed system can include a navigation guidance device configured to locate and/or monitor the target tissue, a single-element transducer for stimulating the target tissue with focused ultrasound (FUS), and a processor configured to determine a cavitation mode. The navigation guidance device can include a cavitation detector and an arm. The single-element transducer can be attached to the arm and be configured to induce the FUS with a predetermined parameter to open the target tissue.
摘要:
Ultrasound methods, devices, and systems are described which support a useful compromise in terms of spatial resolution and temporal resolution for capturing motion in tissue structures. Tissue engineering articles, methods, systems, and devices which employ ultrasound to deliver biological agents to selected regions of a tissue scaffold, deliver mechanical stimulation to cells growing in a tissue scaffold, and enhance the perfusion of fluids through tissue scaffolds.
摘要:
Systems and methods for non-invasive brain stimulation using focused ultrasound are provided. An exemplary method of non-invasive brain stimulation in the brain of a subject can include securing the subject in a fixed position relative to an ultrasound source and providing a focused ultrasound having one or more ultrasound parameters to a location in the brain of the subject, the location and the one or more ultrasound parameters selected to evoke a physical response of the subject, and measuring the physical response of the subject.
摘要:
Systems and methods for opening a tissue to a target value using microbubbles are disclosed herein. In an embodiment of a method for opening a tissue to a target value using microbubbles, a region of the tissue is targeted for opening, an acoustic parameter corresponding to the target value is determined, and an ultrasound beam is applied to the target region at the acoustic parameter such that the tissue at the target region is opened to the target value with the microbubbles. The acoustic parameter can be selected to control an acoustic cavitation event and, in some embodiments, controlling an acoustic cavitation event can include controlling a location, number and/or magnitude of acoustic cavitation events.
摘要:
Systems and methods for non-invasive brain stimulation using focused ultrasound are provided. An exemplary method of non-invasive brain stimulation in the brain of a subject can include securing the subject in a fixed position relative to an ultrasound source and providing a focused ultrasound having one or more ultrasound parameters to a location in the brain of the subject, the location and the one or more ultrasound parameters selected to evoke a physical response of the subject, and measuring the physical response of the subject.