摘要:
A blood collection device has a modular suction regulator assembly in the form of an adjustable negative pressure relief valve which controls the level of suction in a collection chamber by admitting air to a short bleed-in passage proximate to a suction connection. The modular assembly is a canister which drops into a receptacle oriented transversely in the collection vessel, and defines a laterally-directed intake manifold which resists blockage. The intake passes centrally through the canister along a path spanned by a filter, past a hat-shaped poppet supported on a compression spring. Fluted and threaded members control the scale and range of poppet response so that the assembly may be calibrated before installation. A face plate covers the installed canister, and radial vanes in the intake manifold double as gripping elements for manual adjustment of the assembly. A bellows meter provides refined suction resolution by linearly advancing across an oblique or curved reference line. Other improvements include a compact and balanced layout of suction canister, seal chamber and collection chamber, and a rigid handle assembly having five faces integral with the device.
摘要:
A collection vessel for drainage of body fluids includes a molded body with internal dividers constituting ports, baffles and subchambers, and a face plate that closes the body to form a suction-regulated multi-chamber vessel. The vessel has overpressure and underpressure protection, and resists tipping. The molded body includes a wall structure that enhances its utility for blood collection, monitoring, and reinfusion, and incorporates novel valves, ports, handle and stand.
摘要:
A fluid collection vessel for drainage of body fluids includes a molded body with internal dividers constituting ports, baffles and subchambers, and a face plate that closes the body to form a suction-regulated multi-chamber vessel. The vessel has overpressure and underpressure protection, and cannot lose its fluid when tipped. The molded body incorporates novel valves and ports, and a wall structure enhances its utility for blood collection and monitoring. Dynamic fluid level is stabilized by diversion of fluid energy into a side chamber in the downstream region of the manometer column.
摘要:
A method of UV curing and corresponding resulting non-polymeric cross-linked gel are provided. The cross-linked gel can be combined with a medical device structure. The cross-linked gel can provide anti-adhesion characteristics, in addition to improved healing and anti-inflammatory response. The cross-linked gel is generally formed of a naturally occurring oil, or an oil composition formed in part of a naturally occurring oil, that is at least partially cured forming a cross-linked gel derived from at least one fatty acid compound. In addition, the oil composition can include a therapeutic agent component, such as a drug or other bioactive agent. The curing method can vary the application of UV light in both intensity and duration to achieve a desired amount of cross-linking forming the gel.
摘要:
A stand-alone film is derived at least in part from fatty acids. The stand-alone film can have anti-adhesive, anti-inflammatory, non-inflammatory, and wound healing properties, and can additionally include one or more therapeutic agents incorporated therein. Corresponding methods of making the stand-alone film include molding, casting, or otherwise applying a liquid or gel to a substrate, and curing or otherwise treating to form the stand-alone film. The resulting stand-alone film is bioabsorbable.
摘要:
A coated medical device and a method of providing a coating on an implantable medical device result in a medical device having a bio-absorbable coating. The coating includes a bio-absorbable carrier component. In addition to the bio-absorbable carrier component, a therapeutic agent component can also be provided. The coated medical device is implantable in a patient to effect controlled delivery of the coating, including the therapeutic agent, to the patient.
摘要:
A coated medical device an a method of providing a coating on an implantable medical device result in a medical device having a bio-absorbable coating. The coating includes a bio-absorbable carrier component. In addition to the bio-absorbable carrier component, a therapeutic agent component can also be provided. The coated medical device is implantable in a patient to effect controlled delivery of the coating, including the therapeutic agent, to the patient.
摘要:
A radially expandable fluid delivery device for delivering a fluid to a treatment site within the body is disclosed. The fluid delivery device is constructed of a microporous, biocompatible fluoropolymer material having a microstructure that can provide a controlled, uniform, low-velocity fluid distribution through the walls of the fluid delivery device to effectively deliver fluid to the treatment site without damaging tissue proximate the walls of the device. The fluid delivery device includes a tubular member defined by a wall having a thickness transverse to the longitudinal axis of the tubular member and extending between an inner and an outer surface. The wall is characterized by a microstructure of nodes interconnected by fibrils. The tubular member is deployable from a first, reduced diameter configuration to a second, increased diameter configuration upon the introduction of a pressurized fluid to the lumen. The tubular member includes at least one microporous portion having a porosity sufficient for the pressurized fluid to permeate through the wall. Substantially all of the nodes within the microporous portion are oriented such that spaces between the nodes form micro-channels extending from the inner surface-to the outer surface of the wall.
摘要:
A method and apparatus relating to a biocompatible soft tissue implant is disclosed. The implant, in the form of a prosthesis, is constructed of a knitted pile mesh material arranged into either a 3-dimensional structure or a planar shape or structure. The material or fabric includes a plurality of filament extensions projecting outwardly therefrom. The filament extensions can be radially projecting looping filaments from one or more rows of the knitted pile mesh material. The combination of the filament extensions with the 3-dimensional structure results in the biocompatible implant having a structural resistance to hinder anticipated crushing forces applied to the implant, and also provide a suitable 3-dimensional structure for promoting rapid tissue in-growth to anchor such implant without migration and strengthen the repaired tissue area.
摘要:
A vascular endoprosthesis is formed of a tubular liner preform with a continuous surface and having a diameter smaller than that of an intended vessel. The liner is inserted to a treatment site, and its sheet material undergoes a radially-directed expansion to a final size that fits the vessel. Insertion and in situ expansion are achieved using a catheter assembly in which either an internal stent, such as a stiff-filament helically woven tube, or an inflatable balloon urge the liner preform outwardly against the inner wall of the vessel. The stent, or one or more simple internal snap-rings anchor the expanded liner in place. The expanded liner is porous, or becomes more porous during expansion, and one or more aspects of its porosity are tailored to the intended treatment goal of immobilizing treatment material, isolating cells, or permitting controlled permeation of selected materials.