摘要:
Transistor package leads form quarter-wave antenna elements that directly radiate RF energy into free space without the need for a separate antenna. The transistor operates at a fundamental frequency and radiates a harmonic, thereby allowing radiation at frequencies normally considered “beyond cutoff” for a packaged transistor. This technique enables an additional 20 GHz of spectrum for use by surface mount technology. The transistor may be mounted on 1.6 mm thick glass-epoxy circuit board that also forms a quarter-wave reflector at 26 GHz. An optional dielectric lens produces a narrow beam and an optional planar filter rejects spurious fundamental emissions. A 26 GHz ultra-wideband (UWB) pulse-echo radar rangefinder implementation provides a low-cost upgrade to ultrasound.
摘要:
A varying magnetic field excites slight vibrations in an object and a radar sensor detects the vibrations at a harmonic of the excitation frequency. The synergy of the magnetic excitation and radar detection provides increased detection range compared to conventional magnetic metal detectors. The radar rejects background clutter by responding only to reflecting objects that are vibrating at a harmonic excitation field, thereby significantly improving detection reliability. As an exemplary arrangement, an ultra-wideband micropower impulse radar (MIR) is capable of being employed to provide superior materials penetration while providing range information. The magneto-radar may be applied to pre-screening magnetic resonance imaging (MRI) patients, landmine detection and finding hidden treasures.
摘要:
The pulse center detector (PCD) produces an amplitude-independent center-triggered range output for precision radar rangefinders and TDR systems. Pulse center triggering is accomplished by triggering leading-edge and trailing-edge detectors and summing the outputs to produce a computed center-triggered result. Since the occurrence time of a pulse center does not vary with amplitude, the PCD is amplitude-independent. The PCD overcomes limitations of prior automatic pulse detectors, such as the inherent latency of a constant fraction discriminator (CFD) and the uncertainty of a time-of-peak (TOP) detector. The PCD can be implemented with a single analog component—a comparator—and thus requires appreciably fewer analog components than prior automatic detectors while providing lower jitter. Applications include radar and TDR tank gauges, and radar rangefinders for robotics and automotive applications.
摘要:
A wideband sample-hold circuit is formed with a single diode in a minimum component configuration. A gate circuit comprised of a first capacitor and an impedance element forms a gate pulse, stores the sampled signal charge on the first capacitor, and transfers the charge to a second capacitor via the impedance element. The impedance element also defines the gate pulse width, in combination with the first capacitor. In a preferred mode, the first capacitor is responsive to individual gate pulses while the larger second capacitor integrates charge packets from the first capacitor due to multiple gate pulses to provide an integrated baseband output. In radar rangefinder applications, the baseband output is an equivalent time replica of the RF input. The sample-hold circuit has other applications in radar motion sensing and time domain reflectomitry.
摘要:
A non-acoustic pulse-echo radar monitor is employed in the repetitive mode, whereby a large number of reflected pulses are averaged to produce a voltage that modulates an audio oscillator to produce a tone that corresponds to the heart motion. The antenna used in this monitor generally comprises two flat copper foils, thus permitting the antenna to be housed in a substantially flat housing. The monitor converts the detected voltage to an audible signal with both amplitude modulation and Doppler effect. It further uses a dual time constant to reduce the effect of gross sensor-to-surface movement. The monitor detects the movement of one or more internal body parts, such as the heart, lungs, arteries, and vocal chords, and includes a pulse generator for simultaneously inputting a sequence of pulses to a transmit path and a grating path. The pulses transmitted along the transmit path drive Oh impulse, generator and provide corresponding transmit pulses that are applied to a transmit antenna. The gating path includes a range delay generator which generates timed gating pulses. The timed gating pulses cause the receive path to selectively conduct pulses reflected from the body parts and received by a receive antenna. The monitor output potential can be separated into a cardiac output indicative of the physical movement of the heart, and a pulmonary output indicative of the physical movement of the lung. The impulse generator in the transmit path can be replaced with a pulsed RF generator.
摘要:
A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control.
摘要:
The High Accuracy Electronic Material Level Sensor (electronic dipstick) is a sensor based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line or guide wire that is partially immersed in the material being measured; a launcher plate is positioned at the beginning of the guide wire. Reflected pulses are produced at the material interface due to the change in dielectric constant. The time difference of the reflections at the launcher plate and at the material interface are used to determine the material level. Improved performance is obtained by the incorporation of: 1) a high accuracy time base that is referenced to a quartz crystal, 2) an ultrawideband directional sampler to allow operation without an interconnect cable between the electronics module and the guide wire, 3) constant fraction discriminators (CFDs) that allow accurate measurements regardless of material dielectric constants, and reduce or eliminate errors induced by triple-transit or "ghost" reflections on the interconnect cable. These improvements make the dipstick accurate to better than 0.1%.
摘要:
A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudorandomly modulated so that bursts in the sequence of bursts have a phase which varies.
摘要:
The Ultra-Wideband (UWB) Directional Sampler is a four port device that combines the function of a directional coupler with a high speed sampler. Two of the four ports operate at a high sub-nanosecond speed, in "real time", and the other two ports operate at a slow millisecond-speed, in "equivalent time". A signal flowing inbound to either of the high speed ports is sampled and coupled, in equivalent time, to the adjacent equivalent time port while being isolated from the opposite equivalent time port. A primary application is for a time domain reflectometry (TDR) situation where the reflected pulse returns while the outbound pulse is still being transmitted, such as when the reflecting discontinuity is very close to the TDR apparatus.
摘要:
An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes.