摘要:
A system for electroplating a semiconductor wafer is set forth. The system comprises a first electrode in electrical contact with the semiconductor wafer and a second electrode. The first electrode and the semiconductor wafer form a cathode during electroplating of the semiconductor wafer. The second electrode forms an anode during electroplating of the semiconductor wafer. A reaction container defining a reaction chamber is also employed. The reaction chamber comprises an electrically conductive plating solution. At least a portion of each of the first electrode, the second electrode, and the semiconductor wafer contact the plating solution during electroplating of the semiconductor wafer. An auxiliary electrode is disposed exterior to the reaction chamber and positioned for contact with plating solution exiting the reaction chamber during cleaning of the first electrode to thereby provide an electrically conductive path between the auxiliary electrode and the first electrode. A power supply system is connected to supply plating power to the first and second electrodes during electroplating of the semiconductor wafer and is further connected to render the first electrode an anode and the auxiliary electrode a cathode during cleaning of the first electrode.
摘要:
Methods and apparatuses for in-situ cleaning of semiconductor electroplating electrodes to remove plating metal without requiring !the manual removal of the electrodes from the semiconductor plating equipment. The electrode is placed into the plating liquid and, an electrical current having reverse polarity is passed between the electrode and plating liquid. Plating deposits which have accumulated on the electrode are electrochemically dissolved and removed from the electrode.
摘要:
A semiconductor plating bowl which includes a shield on a consumable anode. The shield is preferably made from a dielectric material, such as a plastic. The shield is placed in the area upon which flowing plating fluid would otherwise impinge upon the processing workpiece. The shield has the surprising benefit of reducing the amount of organic additives consumed in the plating process. This is believed to occur because films that otherwise may form on the anode are not disrupted by the flow of plating liquids thereover.
摘要:
A system for electroplating a semiconductor wafer is set forth. The system comprises a first electrode in electrical contact with the semiconductor wafer and a second electrode. The first electrode and the semiconductor wafer form a cathode during electroplating of the semiconductor wafer. The second electrode forms an anode during electroplating of the semiconductor wafer. A reaction container defining a reaction chamber is also employed. The reaction chamber comprises an electrically conductive plating solution. At least a portion of each of the first electrode, the second electrode, and the semiconductor wafer contact the plating solution during electroplating of the semiconductor wafer. An auxiliary electrode is disposed exterior to the reaction chamber and positioned for contact with plating solution exiting the reaction chamber during cleaning of the first electrode to thereby provide an electrically conductive path between the auxiliary electrode and the first electrode. A power supply system is connected to supply plating power to the first and second electrodes during electroplating of the semiconductor wafer and is further connected to render the first electrode an anode and the auxiliary electrode a cathode during cleaning of the first electrode.
摘要:
A semiconductor workpiece holder used in electroplating systems for plating metal layers onto a semiconductor workpieces, and is of particular advantage in connection with plating copper onto semiconductor materials. The workpiece holder includes electrodes which have a contact face which bears against the workpiece and conducts current therebetween. The contact face is provided with a contact face outer contacting surface which is made from a contact face material similar similar to the workpiece plating material which is to be plated onto the semiconductor workpiece. The contact face can be formed by pre-conditioned an electrode contact using a plating metal which is similar to the plating materials which is to be plated onto the semiconductor workpiece.
摘要:
A semiconductor workpiece holder used in electroplating systems for plating metal layers, such as copper, onto a semiconductor workpiece. The workpiece holder includes electrodes which extend and are partially submerged in a liquid plating bath. The electrodes have a contact face which bears against the workpiece and conducts current therebetween. The submersible portions of the electrodes are partially covered with a dielectric layer or surface and partially covered with a conductive layer or surface. The conductive surface is preferably spaced from the contact face and placed in direct contact with the plating bath to allow diversion of some of the plating current directly between the electrode and plating bath. Associated methods are also described.
摘要:
An electroplating processor includes an electrode plate having a continuous flow path formed in a channel. The flow path may optionally be a coiled flow path. One or more electrodes are positioned in the channel. A membrane plate is attached to the electrode plate with a membrane in between them. Electrolyte moves through the flow path at a high velocity, preventing bubbles from sticking to the bottom surface of membrane. Any bubbles in the flow path are entrained in the fast moving electrolyte and carried away from the membrane. The electroplating processor may alternatively have a wire electrode extending through a tubular membrane formed into a coil or other shape, optionally including shapes having straight segments.
摘要:
An electroplating processor includes an electrode plate having a continuous flow path formed in a channel. The flow path may optionally be a coiled flow path. One or more electrodes are positioned in the channel. A membrane plate is attached to the electrode plate with a membrane in between them. Electrolyte moves through the flow path at a high velocity, preventing bubbles from sticking to the bottom surface of membrane. Any bubbles in the flow path are entrained in the fast moving electrolyte and carried away from the membrane. The electroplating processor may alternatively have a wire electrode extending through a tubular membrane formed into a coil or other shape, optionally including shapes having straight segments.