Abstract:
A fluid delivery system for use with ink jet printers, the system including a chamber housing a fluid suitable for ink jet printing; a conduit having a distal end fluidly connected to the chamber and a proximal end configured for fluid connection to an ink jet cartridge for delivering the fluid to an inkjet printer; and a magnetic valve assembly positioned inline between the opposing ends of the conduit, to regulate flow of the fluid to the proximal end. The magnetic valve assembly operates through magnetic interaction and through the movement of a float and flap.
Abstract:
Methods for product authentication, which include: providing an article having a substrate with an analyte encoded composition; obtaining a sample of the composition; applying the sample to a test device to obtain test results, analyzing test results from the test device using an electronic device communicatively connected to an authentication authority, wherein the electronic device transmits the test device code and the test results to the authentication authority and confirms or denies authentication after comparison to an authentication database of authentic test results.
Abstract:
A fluid delivery system for use with ink jet printers, the system including a chamber housing a fluid suitable for ink jet printing; a conduit having a distal end fluidly connected to the chamber and a proximal end configured for fluid connection to an ink jet cartridge for delivering the fluid to an inkjet printer; and a magnetic valve assembly positioned inline between the opposing ends of the conduit, to regulate flow of the fluid to the proximal end. The magnetic valve assembly operates through magnetic interaction and through the movement of a float and flap.
Abstract:
Write-read unit in the form of a compact hybrid drive for combination or alternative use of plugable, removable, encapsulated flat modules equipped with semiconductors (IC cards) and with one or several drives for rotating storage media, such as drives for floppy disks, hard disks, compact disks as well as magneto-optic drives to be connected to electronic devices, such as electronic data processing machines, printers or controls. The selection of the write-read unit is effected via an integrated electronics either joint or separate for the storage media. Existing electronic devices can be extended without requiring additional space in order to shift complex data processing transactions onto the IC card, thus relieving the central processing unit.
Abstract:
Methods for product authentication, which include: providing an article having a substrate with an analyte encoded composition; obtaining a sample of the composition; applying the sample to a test device to obtain test results, analyzing test results from the test device using an electronic device communicatively connected to an authentication authority, wherein the electronic device transmits the test device code and the test results to the authentication authority and confirms or denies authentication after comparison to an authentication database of authentic test results.
Abstract:
A fluid for ink jet printing characters on a substrate that become magnetized in the presence of a magnetic field, the fluid HAVING a suspension of nanoparticles dispersed in a solvent, wherein the fluid comprises a viscosity from 1 to 50 cps and a surface tension of 20-45 dynes/cm, further wherein each nanoparticle is sized between 10-180 nm and comprises M(III)2O3, M(II)O and M(II)M(III)2O4, wherein M(III) is a trivalent metal and M(II) is a divalent metal, or Fe2O3, MnO and M(II)O, wherein M is a divalent metal selected from the group consisting of Fe, Ni, Mn, Co, Cu, Pt, Au, Ag, Ba and a rare earth metal.
Abstract:
A verifiable security document system, which generates a security architecture from the sensitive information, by applying a security platform equipped with secure print media and secure print configurations for printing of the security architecture on a document to form an anti-counterfeit, protected document. The security of the document system is further heighted by communications between the validation center and the document issuer and between the validation center and recipient of the document.
Abstract:
A magnetic fluid composition include a suspension of nano-particles including cross-crystallized multi-metal compounds dispersed in a solvent, the cross-crystallized multi-metal compounds including at least two or more metals having different valencies or oxidation states, the metals selected from the group consisting of a monovalent metal (Me+), a divalent metal (Me2+), a trivalent metal (Me3+), a quadrivalent metal (Me4+) and a rare earth metal. The magnetic fluid having a viscosity and surface tension that permits dispensing from an inkjet printer at a rate of at least 2.5 m/s, at a resolution of at least 600 dpi, supporting jetting pulse frequencies of at least 15 KHz per nozzle (enabling high speed inkjet printing applications of at least 0.6 m/sec per individual nozzle row per print head), and enabling uninterrupted, industrial level print output of magnetic ink character recognition (MICR) code lines suitable for high speed magnetic data scanning per established industry regulations (ANSI X9).
Abstract:
A nanoparticle sized between 10-180 nm composed of M(III)2O3, M(II)O and M(II)M(III)2O4, wherein M(III) is a trivalent metal and M(II) is a divalent metal, or Fe2O3, MnO and M(II)O, wherein M is a divalent metal selected from the group consisting of Fe, Ni, Co, Cu, Pt, Au, Ag, Ba and a rare earth metal.
Abstract:
A magnetic fluid composition include a suspension of nano-particles including cross-crystallized multi-metal compounds dispersed in a solvent, the cross-crystallized multi-metal compounds including at least two or more metals having different valencies or oxidation states, the metals selected from the group consisting of a monovalent metal (Me+), a divalent metal (Me2+), a trivalent metal (Me3+), a quadrivalent metal (Me4+) and a rare earth metal. The magnetic fluid having a viscosity and surface tension that permits dispensing from an inkjet printer at a rate of at least 2.5 m/s, at a resolution of at least 600 dpi, supporting jetting pulse frequencies of at least 15 KHz per nozzle (enabling high speed inkjet printing applications of at least 0.6 m/sec per individual nozzle row per print head), and enabling uninterrupted, industrial level print output of magnetic ink character recognition (MICR) code lines suitable for high speed magnetic data scanning per established industry regulations (ANSI X9).