摘要:
Low metal, low water biomass-derived pyrolysis oils and methods for producing the same are provided. Metal- and water-containing biomass-derived pyrolysis oil is contacted with an acidic ion-exchange resin having sulfonic acid groups to produce a low metal, water-containing biomass-derived pyrolysis oil. The low metal, water-containing biomass-derived pyrolysis oil is removed from the spent ion-exchange resin after ion-exchange. The low metal, water-containing biomass-derived pyrolysis oil is distilled to produce a low metal, low water biomass-derived pyrolysis oil and a distillation product. The distillation product comprises one or both of an alcohol ion-exchange regenerant and an acidic ion-exchange regenerant which may be used to regenerate the spent ion-exchange resin. The regenerated acidic ion-exchange resin may be recycled. The spent alcohol and acid ion-exchange regenerants may be recovered and recycled.
摘要:
Low metal, low water biomass-derived pyrolysis oils and methods for producing the same are provided. Metal- and water-containing biomass-derived pyrolysis oil is contacted with an acidic ion-exchange resin having sulfonic acid groups to produce a low metal, water-containing biomass-derived pyrolysis oil. The low metal, water-containing biomass-derived pyrolysis oil is removed from the spent ion-exchange resin after ion-exchange. The low metal, water-containing biomass-derived pyrolysis oil is distilled to produce a low metal, low water biomass-derived pyrolysis oil and a distillation product. The distillation product comprises one or both of an alcohol ion-exchange regenerant and an acidic ion-exchange regenerant which may be used to regenerate the spent ion-exchange resin. The regenerated acidic ion-exchange resin may be recycled. The spent alcohol and acid ion-exchange regenerants may be recovered and recycled.
摘要:
Methods for regenerating acidic ion-exchange resins and reusing regenerants in such methods are provided. A spent ion-exchange resin is contacted with an alcohol ion-exchange regenerant. The spent ion-exchange resin is thereafter contacted with an acidic ion-exchange regenerant to recharge the acidic ion-exchange resin to produce a regenerated acidic ion-exchange resin. Metal- and water-containing biomass-derived pyrolysis oil is then contacted with the regenerated acidic ion-exchange resin to produce low metal, water-containing biomass-derived pyrolysis oil. The regenerated acidic ion-exchange resin may be recycled. The spent alcohol and acid ion-exchange regenerants may be recovered and recycled.
摘要:
Methods for regenerating acidic ion-exchange resins and reusing regenerants in such methods are provided. A spent ion-exchange resin is contacted with an alcohol ion-exchange regenerant. The spent ion-exchange resin is thereafter contacted with an acidic ion-exchange regenerant to recharge the acidic ion-exchange resin to produce a regenerated acidic ion-exchange resin. Metal- and water-containing biomass-derived pyrolysis oil is then contacted with the regenerated acidic ion-exchange resin to produce low metal, water-containing biomass-derived pyrolysis oil. The regenerated acidic ion-exchange resin may be recycled. The spent alcohol and acid ion-exchange regenerants may be recovered and recycled.
摘要:
Low water-containing biomass-derived pyrolysis oils and processes for preparing them are provided. Water-containing biomass-derived pyrolysis oil is distilled in the presence of an azeotrope-forming liquid to form an azeotrope. The azeotrope is removed at or above the boiling point of the azeotrope and low water biomass-derived pyrolysis oil is obtained.
摘要:
Methods for deoxygenating treated biomass-derived pyrolysis oil are provided. The treated biomass-derived pyrolysis oil is exposed to a catalyst having a neutral catalyst support such as a non-alumina metal oxide support, a theta alumina support, or both. The non-alumina metal oxide support may be a titanium oxide (TiO2) support, a silicon oxide support, a zirconia oxide (ZrO2) support, a niobium oxide (Nb2O5) support, or a support having a mixture of non-alumina metal oxides. The catalyst may include a noble metal or a Group VIII non-noble metal and a Group VIB non-noble metal on the neutral catalyst support. The treated biomass-derived pyrolysis oil is introduced into a hydroprocessing reactor in the presence of the catalyst under hydroprocessing conditions to produce low oxygen biomass-derived pyrolysis oil.
摘要:
Embodiments of methods and catalysts for deoxygenating a biomass-derived pyrolysis oil are provided. The method comprises the step of contacting the biomass-derived pyrolysis oil with a first deoxygenating catalyst in the presence of hydrogen at first predetermined hydroprocessing conditions to form a first low-oxygen biomass-derived pyrolysis oil effluent. The first deoxygenating catalyst comprises a neutral catalyst support, nickel, cobalt, and molybdenum. The first deoxygenating catalyst comprises nickel in an amount calculated as an oxide of from about 0.1 to about 1.5 wt. %.
摘要:
Embodiments of methods and catalysts for deoxygenating a biomass-derived pyrolysis oil are provided. The method comprises the step of contacting the biomass-derived pyrolysis oil with a first deoxygenating catalyst in the presence of hydrogen at first predetermined hydroprocessing conditions to form a first low-oxygen biomass-derived pyrolysis oil effluent. The first deoxygenating catalyst comprises a neutral catalyst support, nickel, cobalt, and molybdenum. The first deoxygenating catalyst comprises nickel in an amount calculated as an oxide of from about 0.1 to about 1.5 wt. %.
摘要:
Processes for producing a low acid biomass-derived pyrolysis oil are provided that include pre-treating a biomass-derived pyrolysis oil to form a treated acid-containing biomass-derived pyrolysis oil. The processes also include esterifying the treated acid-containing biomass-derived pyrolysis oil in the presence of supercritical alcohol and a catalyst composition to form the low-acid biomass-derived pyrolysis oil, the catalyst composition comprising a material selected from the group consisting of an unsupported solid acid catalyst, an unsupported solid base catalyst, and a catalytic metal dispersed on a metal oxide support.
摘要:
Methods for deoxygenating treated biomass-derived pyrolysis oil are provided. The treated biomass-derived pyrolysis oil is exposed to a catalyst having a neutral catalyst support such as a non-alumina metal oxide support, a theta alumina support, or both. The non-alumina metal oxide support may be a titanium oxide (TiO2) support, a silicon oxide support, a zirconia oxide (ZrO2) support, a niobium oxide (Nb2O5) support, or a support having a mixture of non-alumina metal oxides. The catalyst may include a noble metal or a Group VIII non-noble metal and a Group VIB non-noble metal on the neutral catalyst support. The treated biomass-derived pyrolysis oil is introduced into a hydroprocessing reactor in the presence of the catalyst under hydroprocessing conditions to produce low oxygen biomass-derived pyrolysis oil.